Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107926
PIRA download icon_1.1View/Download Full Text
Title: Artificial intelligence for medicine : progress, challenges, and perspectives
Authors: Huang, T
Xu, H
Wang, H
Huang, H 
Xu, Y
Li, B
Hong, S
Feng, G
Kui. S
Liu, G
Jiang, D
Li, ZC
Li, Y
Ma, C
Su, C
Wang, W
Li, R
Lai, P 
Qiao, J
Issue Date: 21-Sep-2023
Source: The innovation medicine, 21 Sept 2023, v. 1, no. 2, 100030
Abstract: Artificial Intelligence (AI) has transformed how we live and how we think, and it will change how we practice medicine. With multimodal big data, we can develop large medical models that enables what used to unimaginable, such as early cancer detection several years in advance and effective control of virus outbreaks without imposing social burdens. The future is promising, and we are witnessing the advancement. That said, there are challenges that cannot be overlooked. For example, data generated is often isolated and difficult to integrate from both perspectives of data ownership and fusion algorithms. Additionally, existing AI models are often treated as black boxes, resulting in vague interpretation of the results. Patients also exhibit a lack of trust to AI applications, and there are insufficient regulations to protect patients’ privacy and rights. However, with the advancement of AI technologies, such as more sophisticated multimodal algorithms and federated learning, we may overcome the barriers posed by data silos. Deeper understanding of human brain and network structures can also help to unravel the mysteries of neural networks and construct more transparent yet more powerful AI models. It has become something of a trend that an increasing number of clinicians and patients will implement AI in their life and medical practice, which in turn can generate more data and improve the performance of models and networks. Last but not the least, it is crucial to monitor the practice of AI in medicine and ensure its equity, security, and responsibility.
Publisher: Innovation Press
Journal: The innovation medicine 
EISSN: 2959-8745
DOI: 10.59717/j.xinn-med.2023.100030
Rights: © 2023 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
The following publication Huang T., Xu H., Wang H., et al., (2023). Artificial intelligence for medicine: Progress, challenges, and perspectives. The Innovation Medicine 1(2), 100030 is available at https://doi.org/10.59717/j.xinn-med.2023.100030.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Huang_Artificial_Intelligence_Medicine.pdf2.8 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

133
Citations as of Dec 22, 2024

Downloads

100
Citations as of Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.