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PUBLIC SUMMARY
■   Data, computing power, and algorithm drive artificial intelligence.

■   Artificial intelligence has changed the practice of medicine.

■   Artificial intelligence is improving the quality of life.
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Artificial  Intelligence  (AI)  has  transformed  how  we  live  and  how  we  think,
and it will change how we practice medicine. With multimodal big data, we
can develop large medical models that enables what used to unimaginable,
such  as  early  cancer  detection  several  years  in  advance  and  effective
control  of  virus  outbreaks  without  imposing  social  burdens.  The  future  is
promising,  and  we  are  witnessing  the  advancement.  That  said,  there  are
challenges that cannot be overlooked. For example, data generated is often
isolated and difficult to integrate from both perspectives of data ownership
and fusion algorithms. Additionally, existing AI models are often treated as
black  boxes,  resulting  in  vague  interpretation  of  the  results.  Patients  also
exhibit a  lack  of  trust  to  AI  applications,  and there  are  insufficient  regula-
tions  to  protect  patients’ privacy and  rights.  However,  with  the  advance-
ment of  AI  technologies,  such  as  more  sophisticated  multimodal  algo-
rithms and federated learning, we may overcome the barriers posed by data
silos.  Deeper  understanding  of  human  brain  and  network  structures  can
also help to unravel  the mysteries of  neural  networks and construct  more
transparent  yet  more  powerful  AI  models.  It  has  become  something  of  a
trend that an increasing number of clinicians and patients will implement AI
in their life and medical practice, which in turn can generate more data and
improve the performance of models and networks. Last but not the least, it
is  crucial  to  monitor  the  practice  of  AI  in  medicine  and  ensure  its  equity,
security, and responsibility.
 

INTRODUCTION
Artificial intelligence (AI) is a rapidly advancing field which employs a vari-

ety  of  technologies  to  address diverse  tasks and problems.1 It is  character-
ized by the ability of computers to learn, reason, perceive, infer, communicate,
and  make  decisions  in  a  manner  comparable  to  or  surpassing  humans.2 AI
has been applied in medicine as a tool for information synthesis, clinical deci-
sion  support,  disease  management,  patient  engagement,  and  performance
enhancement.3 The economic benefits of AI have also been noted with fore-
casted savings of 150 billion USD in healthcare expenses by 2025.4

Clinical decision support has been utilized in medical practice since 1985.5

Over the past four decades, machine learning, deep learning, expert systems,
fuzzy  logic,  and  natural  language  processing  have  emerged  as  the  most
frequently  employed  types  of  AI,  with  applications  in  monitoring,  prediction,
diagnosis,  information  management,  data  collection,  and  clinical  practice.6

Despite of these wide applications, the validation of its clinical utility remains

insufficient.7 On the other hand, ethical and legal concerns, such as potential
biases  in  AI  models,  safeguarding  patient  privacy,  and  establishing  trust
among  clinicians  and  patients,  have  recently  elicited  public  attention  with
regards to the integration of AI in healthcare.8,9 Whilst promising, there it still a
long  way  ahead  before  AI  becomes a  norm or  regular  practice  in  medicine.
Figure 1 summarizes the progress, challenges, as well as perspectives for the
application of AI in medicine. Basically, AI has the capability to assist in moni-
toring  and  managing  health  information,  enhance  disease  diagnosis  and
treatment  strategies,  and  aid  in  the  formulation  of  public  health  policies.
Meanwhile,  there  exist  critical  challenges to  be  addressed,  including but  are
not  limited  to,  isolated  systems,  low-quality data,  ineffective  learning  algo-
rithms, neglection of patient rights, and the absence of regulatory policies. If
these obstacles or  concerns can be cleared,  the field  may undergo a trans-
formation from being problem-driven to data-driven, and the implementation
of  large-scale  real-world  AI  models  may  induce  revolutionary  impacts  to
medical practice and our society. 

PROGRESS OF AI IN MEDICINE 

AI in health monitoring and management
AI  aids  in  health  monitoring  and  personalized  health  management  by

analyzing individual biomarkers, behavioral patterns, and environmental data
to  identify  potential  health  issues  and  prevent  risk  events.10,11 Through  the
analysis of big data, AI can also provide tailored recommendations for diet,12

exercise,13 sleep,14 and  other  aspects,  thereby  assisting  personalized  health
management.  In  recent  years,  the  emergence  of  AI-driven  technologies  has
presented promising opportunities to enhance the quality of life for the elderly
population. These technological advances, including intelligent hearing aids,15

prosthetics,16 and  wearable  devices,17 lead  to  improved  healthcare  and
support,  enabling  greater  competence  in  managing  the  aging  process.  An
example  of  this  is  the  development  of  OvaRePred  (Figure  2),  an  ovarian
reserve  evaluation  system  that  utilizes  real-world  data  to  assess  ovarian
reserve function in different scenarios.18-21 The system can predict the onset
age of fertility decline related to diminished ovarian reserve (DOR) with ovar-
ian reserve score of 50 and the onset age of perimenopause, by considering
the  current  ovarian  reserve  function  and  the  ovarian  aging  curve.  This  tool
has  seen  trials  for  clinical  use  in  several  hospitals  and  third-party laborato-
ries  in  China.  The  information  it  provides  is  crucial  not  only  in  empowering
women to effectively manage their perimenopausal period but also in helping
them create a personalized childbearing plan based on their individual ovar-
ian  reserve  status.  Another  example  is  Robot  Handy  1.  It  can  help  patients

REVIEW

2  　　　The Innovation Medicine 1(2): 100030, September 21, 2023 www.the-innovation.org/medicine

mailto:huangtao@sibs.ac.cn
mailto:puxiang.lai@polyu.edu.hk
mailto:jie.qiao@263.net
mailto:huangtao@sibs.ac.cn
mailto:puxiang.lai@polyu.edu.hk
mailto:jie.qiao@263.net
https://doi.org/10.59717/j.xinn-med.2023.100030
https://doi.org/10.59717/j.xinn-med.2023.100030
https://doi.org/10.59717/j.xinn-med.2023.100030
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.the-innovation.org/medicine
https://www.the-innovation.org/medicine
https://www.the-innovation.org/medicine


with severe disabilities to complete essential care functions from daily activi-
ties like eating, drinking, bathing, and teeth brushing to fine activities such as
shaving and putting  on makeup.22 These intelligent  robots  also  have poten-
tials  to  assist  patients  in  more  complicated  tasks  like  furniture  moving  and
object transportation, which helps to considerably expand their radius of daily
activities while taking full consideration of the safety of the patients.23

AI is  also  often  utilized  for  monitoring  the  vital  signs  of  patients  in  emer-
gency departments, operating rooms, and intensive care units.24-26 The imple-
mentation of an intelligent monitoring system that allows clinicians to antici-
pate changes in a patient's vital signs and prevent the deterioration of his or
her condition.26 This system is particularly vital for patients with acute mental
epilepsy  or  behavioral  disorders.27-29 Studies  have  demonstrated  that  AI-
assisted  nursing  observation  systems  can  facilitate  real-time  monitoring  of
psychiatric  patients  and  improve  their  treatment  experience.28 In  addition,
epilepsy electroencephalograph  (EEG)  classification,  visualization,  and  ultra-
sound recognition algorithms can be utilized to monitor seizures in epilepsy
patients and provide nurses with timely information on changes in a patient's
condition.29 A few more examples include an application for early warning of
falls  and  lowering  the  incidence  of  falls 30-33 and  a  risk  assessment  system
that can effectively predict the risk of stress injury,  enabling nurses to focus
their  attention  on  high-risk  patients  without  increasing  their  workload.34-36

Further, with the use of  classification algorithm,  a  prediction model  of  pres-
sure  injury  for  inpatients  has  been  established,  allowing  nurses  to  identify
high-risk patients with an accuracy rate of 87.2%.37
 

AI in disease diagnosis and drug treatment
Compared  with  human  experts,38 AI has  already  exhibited  better  perfor-

mance  in  a  variety  of  diagnostic  tasks  such  as  cancer  early  detection,39,40

disease classification,41,42 clinical outcome prediction,43,44 and precision medi-
cation.45,46 One of the most promising applications of AI in cancer diagnosis is
the  use  of  deep  learning  algorithms  to  analyze  medical  images  like  CT,41

MRI,47 and  histological  images.48 These  algorithms  are  able  to  learn  from
large medical image datasets to identify patterns or features that are indica-
tive  of  cancer,  and  have  the  potential  to  revolutionize  cancer  diagnosis  by

improving the diagnostic accuracy and speed.49

It has  been  reported  that  deep  learning  frame-
work  utilizing  transfer  learning  can  achieve
performance  comparable  to  that  of  human
experts  in  classifying  age-related  macular
degeneration  and  diabetic  macular  edema,50 as
well  as  predicting  the  treatment  response  of
lung cancer.51 AI software has also been applied
to classify breast density and arrange additional
MRI  screenings  for  patients  with  high  breast
density,  which  has  been  found  to  reduce  the
incidence  of  interval  cancer.52 Similarly, AI  fluo-
rescence  image  interpretation  software  has
gradually  been  applied  in  the  field  of  indirect
immunofluorescence detection  of  autoantibod-
ies, 53 and been developed to improve the preci-
sion  of  bone  age  assessment  beyond  what  is
possible  with  conventional  G-P  bone  age
mapping.54 Additionally,  deep  learning  methods
have been employed to analyze patients' speech
data,  which  could  successfully  identify  early
linguistic  features  of  Alzheimer's  disease  via
narrative speech.55

An  example  worthy  of  being  noted  is
Controlled  Ovulation  Stimulation  (COS)  in
combination  with  in-vitro  fertilization  and
embryo  transfer  (IVF-ET),  which  stands  as  the
most  prevalent  and  efficacious  method  within
the  realm  of  assisted  reproductive  technology.

The crux of decision-making in COS revolves around determining the appro-
priate dosage of  exogenous follicle  stimulating hormone (FSH) for  ovulation
induction.  Presently,  most  clinicians  adhere  to  a  fixed  standard  dosage  of
exogenous FSH, typically falling within a range from 150 to 225 IU. The span
is  usually  adopted  based  on  a  combination  of  the  clinician’s  professional
experience  and  the  patient’s  past  responses  to  ovarian  stimulation,  with
certain  dosage  adjustment  whenever  deemed  necessary.  That  said,  it  is
paramount  to  acknowledge  that  the  selection  of  the  exogenous  FSH  dose
primarily hinges on the patient's ovarian reserve and response, both of which
exhibit  significant  individual  variations.  Consequently,  precise dose selection
necessitates  a  high  level  of  clinical  expertise;  achieving  standardization  and
personalization in FSH dose selection poses a formidable challenge. Recently,
a  team  has  developed  an  online  tool  referred  as  POvaStim,46 accessible  at
http://121.43.113.123:8004.  With  an  r-squared value  exceeding  0.9,  indicat-
ing  that  POvaStim  can  account  for  >90%  of  outcome  variables,  the  tool
currently  stands as the foremost  model  for  guiding exogenous FSH dosage
on an international  scale,  and it  has been successfully  implemented in local
hospitals where  it  was  developed.  The  assistance  of  POvaStim  can  signifi-
cantly  accelerate  the  learning  curve  of  junior  clinicians,  so  that  they  can
achieve  comparable  levels  of  effectiveness  in  COS  treatment  as  their  more
experienced senior counterparts.

Another exampled application of AI in disease early diagnosis is related to
Polycystic Ovary Syndrome (PCOS), one of the most prevalent endocrine and
metabolic disorders  among  women  worldwide  that  has  affected  approxi-
mately  6-20% of  women in  their  childbearing  years.56-61 PCOS is  associated
with a range of adverse health outcomes such as infertility, metabolic disor-
ders, sleep apnea, emotional disorders, cardiovascular disease, and endome-
trial  cancer.  Therefore,  early  identification  and  long-term  management  of
PCOS are critical to mitigate the potential risks associated with the condition.
Xu et  al. from  Peking  University  Third  Hospital  have  developed  a  standard-
ized,  non-invasive,  and  user-friendly  screening  model  referred  as  PCOSt
(Figure  3)  based  on  real-world  data  from  their  reproductive  center.62 This
model is straightforward and easy to implement, offering a simpler yet more
accessible alternative to the widely accepted Rotterdam standard, 62,63 which
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empowers  PCOSt  an  valuable  asset  in  expanding  the  reach  of  early  PCOS
screening  to  minimize  missed  diagnoses.  Simultaneously,  it  provides  a
robust  tool  for  managing  PCOS-related  patient  care.  Currently,  the  tool  has
been  explored  for  clinical  applications,  for  example  as  a  screening  tool  to
assess  the  risk  levels  of  patients  visiting  the  hospital.  Those  identified  with
medium  or  high  risk  will  receive  additional  consultations  and  treatment  for
PCOS  complications  using  the  hospital's  available  resources.  This  initiative
holds  the  promise  of  significant  improvement  in  the  long-term  health
management for the captioned group of women. 

AI in public health and policy making
During  the  COVID-19  pandemic,  AI  has  made  significant  contributions  to

epidemiological  modeling  and  forecasting,  risk  assessment  and  mitigation,
contact tracing and exposure notification, vaccine distribution and prioritiza-
tion,  public  health  communication  and  education,  and  more.64-66 A  good
example is the Health QR code that has played vital roles in not only making
travelling  easier  and  faster,  but  also  improving  the  efficiency  of  epidemic
prevention and control in a more scientific manner. By analyzing multimodal
data like  infection  rates,  mobility  patterns,  and  social  interactions,  AI  algo-
rithms can provide valuable insights for policymakers in modeling the spread

of COVID-19 and predicting its trajectory.67

Beyond the pandemic, AI has become an essential tool in the field of public
health policymaking and has made noteworthy contributions to the advance-
ment  of  the  field  (Figure  4).68-70 One  of  the  significant  benefits  of  AI  is  its
capability  to  analyze  health  big  data  such  as  electronic  health  records,
disease surveillance systems, social media posts, and environmental data. AI
can  analyze  individual  and  population-level  data  to  uncover  insights  into
health  behaviors,  lifestyle  choices,  and  risk  factors.  These  data  can  also  be
utilized  to  develop  evidence-based  interventions  and  health  promotion
campaigns  that  effectively  target  specific  populations,  and  to  address  key
public health challenges like smoking cessation, healthy eating, and physical
activity. Lastly, AI can support the analysis of extensive amounts of scientific
literature, clinical trials, and research studies, which further advances the field
of public health. 

CHALLENGES OF AI IN MEDICINE
As  discussed  above,  the  transformative  potential  of  AI  in  healthcare  is

profound.  By  leveraging  vast  amounts  of  data,  AI  can  offer  insights  that
promise  to  redefine  patient  care,  diagnosis,  and  treatment  methodologies.
However,  this  landscape  is  not  without  challenges  and  addressing  them  is
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crucial for the seamless integration of AI into healthcare. The biggest one is
the data challenge (Figure 5). There are too many data types (Figure 5A), and
the  data  quality  is  often  low  (Figure  5B),  with  many  missing  values  (Figure
5C). Moreover, it is difficult to integrate data from diverse sources (Figure 5D)
and  interpret  the “black  box” model  in  a  transparent  and  comprehensible
manner (Figure 5E). 

Data silos: the fragmentation challenge
In  healthcare  sectors  worldwide,  the  challenge  of  data  silos  is  becoming

increasingly  pronounced.  These  silos,  characterized  by  isolated  storage
systems with  their  unique formats and/or  structures,  act  as barriers  to  effi-
cient sharing and integration of crucial patient data. Such fragmentation not
only hampers researchers in their quest for comprehensive datasets but also
curtails  the potential  of  AI  applications,  which inherently  rely  on diverse and
integrated data sources for optimal performance. Recognizing the gravity of
this issue, there's a concerted push within the community towards adoption
of standardized data formats.  Leading this transformation are protocols like
Fast Healthcare Interoperability Resources (FHIR) and open Electrical Health
Record  (openEHR).71 These  standards,  by  promoting  interoperability,  aim  to
bridge the existing data gaps and facilitate  seamless data exchange across
platforms. However, as the industry gravitates towards greater data integra-
tion, the  spotlight  is  firmly  on patient  privacy  and data  security.  It's  impera-
tive to ensure that as data becomes more accessible, it doesn't compromise
patient  confidentiality.  To  this  end,  robust  data  governance  frameworks  are
being developed, with clear guidelines on data access, consent management,
and anonymization,  striking a  balance between promoting data  sharing and
safeguarding patient privacy.72,73
 

Data standardization and interoperability in healthcare
In the evolving landscape of healthcare,  data standardization and interop-

erability  are  undeniably  crucial.  However,  they  are  fraught  with  challenges.
The sheer diversity of  data sources,  each with its distinct  format and struc-

ture, complicates standardization.74 Instruments from different eras produce
data  with  varying  quality,  granularity,  and  formats,  making  integration  a
daunting task. Even when data is harmonized, achieving true interoperabil-
ity—where different healthcare systems can seamlessly communicate and
interpret  this  data —is  persistently  demanding.  Legacy  systems,  deeply
entrenched in many healthcare sectors, often resist integration with newer,
interoperable  platforms.  The  absence  of  universally  embraced  standards
can  lead  to  fragmented  efforts,  with  organizations  adopting  divergent
approaches,  further  muddying the waters.  While  standards like Integrating
the Healthcare Enterprise (IHE),  Health Level  Seven (HL7),  Fast Healthcare
Interoperability Resources  (FHIR),  and  Digital  Imaging  and  Communica-
tions in Medicine (DICOM) have made commendable progress, their global
adoption and consistent implementation remain aspirational.75Multi-institu-
tional initiatives like Quantitative Imaging Biomarkers Alliance (QIBA),76 Image
Biomarker Standardization Initiative (IBSI),77 UK Biobank,78 The Cancer Imag-
ing Archive (TCIA),79 and The Cancer Genome Atlas (TCGA),80 underscore the
importance of standardized, curated data. 

Data quality control
The  efficacy  and  dependability  of  AI  systems  in  medicine  are  contingent

upon the quality of the utilized data in their  development and online deploy-
ment.74 Medical data  often  contains  missing  values,  outliers,  and  inconsis-
tencies which necessitate  attention.  The insufficiency of  data completeness
may  result  from  a  variety  of  factors  such  as  incomplete  records  or  errors
during data entry. Noise and outliers may occur due to measurement errors
or  anomalous  values.  To  prevent  biased  predictions,  misleading  outcomes,
and potential harm to patients, it is crucial to establish robust quality control
processes and adhere to standardized guidelines.81 The process of data qual-
ity  control  includes  assessing  the  completeness,  accuracy,  consistency,
representativeness, and timeliness of the collected data (Figure 5B). In medi-
cal  AI  research,  the  initial  step  in  enhancing  the  quality  and  integrity  of
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Figure 3.  PCOSt, an AI tool for early screening of polycystic ovary syndrome (PCOS) PCOSt is a screening tool for PCOS that is diagnosed based on the observation results of
anti-mullerian hormone (AMH), the upper limit of menstrual cycle length, and body mass index (BMI). Women identified with medium or high risk of PCOS via this screening will
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consultations, and providing guidance on weight management, etc.
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datasets  is  data  cleaning or  preprocessing.  To streamline  the  data  cleaning
process  and  improve  the  accuracy  and  completeness  of  medical  datasets,
automated  algorithms,  statistical  techniques,  and  machine  learning
approaches  such  as  data  profiling,  outlier  detection,  and  anomaly  detection
are  being developed.  The second step is  to  ensure  accurate  and consistent
annotation and labeling to train and validate the supervised learning models.
Well-defined  annotation  guidelines  and  appropriate  training  for  annotators
are crucial to ensure the inter-annotator agreement. 

Multimodal data fusion algorithms
Current biomarkers used in diagnosis are in majority limited to one modal-

ity,82 which  may  not  fully  capture  the  different  facets  of  the  disease.  Multi-
modality in  biomedical  research  integrates  diverse  data  types,  from  elec-
tronic  health  records  and  wearable  biosensors  to  genomics  and
metabolomics, offering a comprehensive view of an individual's health (Figure
5A).  Discovering  associations  between  various  modalities  such  as  cellular
morphology, genetic profiling, and radiology findings, can lead to the identifi-
cation  of  new  biomarkers  and  improve  large-scale  population  screening.83

Despite of the substantial potential of multimodal fusion techniques in medi-
cal  AI,  several  challenges  need  attention.  Firstly,  multimodal  medical  data
often have  different  formats,  resolutions,  dimensions,  and  feature  represen-
tations that  make  data  fusion  intricate.  Researchers  must  establish  stan-
dards and  interoperability  for  medical  data  to  guarantee  seamless  integra-
tion and communication across various data sources.71 This includes, but is
not  limited  to,  defining  uniform  data  formats,  terminology  standards,  and
protocols for effective data sharing and integration between different health-
care  systems  and  institutions.  Secondly,  selecting  an  appropriate  fusion
strategy and model architecture for multimodal data is crucial  but challeng-
ing  owing  to  the  intricate  relationships  between  different  modalities  and
levels of data interaction. Researchers can explore different fusion strategies,
such  as  early  fusion  (combining  raw  data),  late  fusion  (combining  model
outputs), or hybrid fusion (combining intermediate representations), based on
the  nature  of  data  and  task  at  hand  (Figure  5C).84 Thirdly,  in  some  cases,
certain modalities may have incomplete or missing data, i.e.,  modality miss-
ingness, posing difficulties for data fusion and online use of models.85

Solutions  to  address  modality  missingness  include  data  interpolation/
imputation, information  transfer,  leveraging  knowledge  and  priors,  and  inte-
grating multimodal features. By aggregating, integrating, and analyzing these

complementary  digital  assets  across  large
patient populations, deep learning models can
identify patterns from images as well as histo-
logical, genomic, and clinical data that may be
difficult  for  humans  to  detect.86,87 Built  upon
that,  it  is  potential  to  developed  non-invasive
alternatives for existing biomarkers to support
large-scale  population  screenings,88 which  is
essential  to  further  boost  the  discovery  of
multimodal  prognostic  features  and  learning
capability  from  collective  history  of  large
cohorts  of  patients  to  inform  better  clinical
management (Figure 6).89
 

Bridging  the  gap  between  accuracy  and
interpretability

The  opaque  "black  box"  nature  of  complex
AI  models  like  deep  neural  networks  poses  a
challenge for their acceptance in healthcare. In
medical  contexts,  where elucidating biological
mechanisms is  paramount,  model  inter-
pretability becomes imperative. Although black-
box  models  may  excel  at  initial  screenings,
their  recommendations - especially for  treat-
ment  or  research - must  be  explainable.  To

enable this, a concerted effort is required to demystify AI and render its logic
transparency  (Figure  5D).  For  example,  decision  trees  or  linear  regression
models, albeit being less accurate than neural networks, provide more visibil-
ity  into  reasoning.90 Techniques  like  Local  Interpretable  Model-Agnostic
Explanations (LIME) approximate complex models with simpler, interpretable
ones to explain individual predictions.91 Modular architectures allow dissect-
ing  reasoning  across  different  stages.92 Methods  like  activating  hidden
neurons shed light on neural networks' inner workings.93 Model introspection
tools  let  users  query  feature  importance  and  confidence  levels.93 Extensive
testing characterizes failure modes and ensures safety, like validating an AI-
assisted treatment recommendation by requiring justifications against estab-
lished  clinical  guidelines.94 Throughout  these  procedures,  humans  must
remain  empowered  to  scrutinize  AI-assisted  decisions.  Close  collaboration
between clinicians and AI researchers, infusing medical knowledge, will open
the black box - engendering trust in AI where it matters most (Figure 5E). 

Ethical and regulatory issues
The application of AI in medicine raises ethical concerns and poses a chal-

lenge  to  protect  patient  privacy  and  rights.  AI  applications  collect  patients'
personal data, which necessitates privacy protection regulations to minimize
the  risk  of  unauthorized  access  by  malicious  entities.  The  collection  and
utilization  of  private  data  should  respect  patients'  wishes,  and  the  training
and learning mechanisms of AI must be transparent to ensure the diagnosis
and  decision-making  processes  are  comprehensible  to  involved  personnel.
Failure to do so may infringe the informed rights of patients during diagnosis
and  treatment.95-97 Effective  regulation  and  policy  frameworks  that  address
ethical  concerns,  privacy  issues,  algorithm  transparency,  and  patient  safety
are hence necessary. The regulatory environment varies across countries and
organizations,  depending  on  the  technology  development  stages  and  legal
coverage of  AI  innovation.  The World  Health  Organization  (WHO)  advocates
for  medical  AI  and  has  outlined  ethical  principles  specific  to  AI,  including
transparency,  privacy  protection,  fairness,  and  accountability.  In  2020,  the
United  States  signed  Executive  Order 13960,  which  prioritizes  the  principles
of  public  trust,  fairness,  transparency,  and  accountability  in  the  use  of  AI
within  the  federal  government.  The  National  Institutes  of  Health  (NIH)  then
released  a  strategic  plan  that  underscores  AI's  integration  into  biomedical
research and healthcare. In the regulation of medical AI products as medical
devices, the Food and Drug Administration (FDA) has issued guidance docu-
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ments such  as  "Clinical  Decision  Support  Software"  and  "Artificial  Intelli-
gence/Machine Learning (AI/ML)-Based Software as a Medical Device".  The

FDA's  Digital  Health  Software  Precertification  (Pre-Cert)  Program  enables
rapid  market  approval  for  software  as  a  medical  device  (SaMD)  product.  In
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Figure 5.  Navigating the data challenge in AI for medicine (A) An overview of diverse data types in AI for medicine,  encompassing electronic medical records, environmental
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tation process, with a focus on deep learning-based unsupervised method for data completion. (D) An exploration of multimodal data fusion algorithms, showcasing techniques
for integrating diverse data sources. (E) Opening the "black box" for enhanced model interpretability,  spotlighting methods that harmonize model accuracy with lucid explana-
tions for transparent and comprehensible predictions.
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2018, the European Union implemented the General Data Protection Regula-
tion (GDPR), which aims to protect personal data and establish guidelines for
AI use in areas including healthcare. The Declaration of Cooperation on Artifi-
cial Intelligence, signed by the EU and 42 countries, stresses ethical and legal
implications  and  endeavors  to  steer  AI  development  and  implementation
toward  human  well-being  and  international  collaboration.  The  EU  has  also
implemented  the  Medical  Device  Regulation  (MDR)  and  In  Vitro  Diagnostic
Regulation  (IVDR)  to  regulate  medical  devices,  including  AI-based products.
Ongoing initiatives, such as the European Health Data Space (EHDS), enable
secure and authorized cross-border sharing of health data, ensuring interop-
erability  and  promoting  research  and  innovation,  which  has  effectively
supported the growth of the European medical AI industry.

In 2017, China released the "Next Generation Artificial Intelligence Develop-
ment Plan" and followed it up with "The Beijing AI Principles" in 2019. These
releases were aimed at providing guidelines for responsible development and
use of AI,  including its utilization in medicine.  Since then,  regulations related
to medical AI in China have undergone significant development, for example
with  the  introduction  of  the “Special  Review  and  Approval  Procedure” for
innovative medical  devices by the National  Medical  Products Administration
(NMPA) in 2018. More recently, in 2021, the NMPA published "Guiding Princi-
ples for the Classification of Artificial Intelligence Medical Software Products"
to provide guidance for AI product registration. Despite regulatory challenges,

some  innovative  medical  AI  products  have  received  regulatory  approval.
Nevertheless,  data availability and quality regulations in China are still  under
construction, leading to challenges such as data privacy, fragmentation, and
limited interoperability between healthcare systems.

These  challenges  are  not  unique  to  China  but  are  common  to  the  global
medical  AI  industry.  The  accessibility  and  quality  of  data  are  significant
obstacles  to  the  wide application of  AI  in  healthcare.  Obtaining high-quality,
diverse, and accessible data is crucial for AI success, but obtaining such data
that is  properly structured remains to be further explored.  Developing coun-
tries  like  China,  even  with  vast  amounts  of  data  and  relatively  open  privacy
rules,  encounters  obstacles  in  utilizing  their  data  due  to  interoperability  and
privacy concerns.  Additionally,  setting up interpretation ability  with trust  is  a
non-trivial  task.  The  operation  of  AI  algorithms  often  occurs  as  an  opaque
process, lacking the ability to provide explanations for decision-making. Ethi-
cal  guidelines  underscore  the  criticality  of  human  control  and  oversight  in
maintaining authority  over  AI  systems.  To  establish  trust  amongst  health-
care professionals, patients, and regulatory bodies, it is vital to ensure trans-
parency and interpretability within AI models.

It  is  also  worthy  of  being  noted  that  with  the  rapid  development  of  large
language models like ChatGPT and Claude in 2023, related policies and regu-
lations  have  been updated  frequently  in  major  entities.  For  example,  the  US
White House announced New Actions to Promote Responsible AI Innovation
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that  Protects Americans’ Rights and Safety in May 2023,  top US AI  compa-
nies  like  OpenAI,  Google,  and  others  started  to  watermark  AI  contents  for
safety  in  July  2023.  China's  Cyberspace  Administration  has  released  the
Interim Measures for the Management of Generative AI Services, focusing on
the management  of  politically  and legally  sensitive  content  and content  risk
assessment  and  traceability.  The  UK  government  has  also  released  its  AI
regulation  that  has  specifically  encouraged  the  development  of  large
language  models,  and  The  EU  has  released  its  first  regulation  on  AI,  the  AI
ACT,  highlighting different  rules  for  different  risk  levels.  As seen,  regulations
are  being  updated  at  an  accelerated  pace,  which  is  aimed  to  support  and
encourage rapid and stable development of medical AI industry and to regu-
late  and  manage  the  risks  (Figure  7).  At  last,  it  should  be  noted  that  the
imbalance coverage of AI related regulations and policies among entities may

raise potential issues. 

PERSPECTIVES OF AI IN MEDICINE 

Paradigm shift from "problem-driven" to "data-driven"
Advancements in AI technology and its integration with medicine promise

to yield remarkable outcomes in three key areas: data, algorithms, and appli-
cations.  With  the  widespread  application  of  Internet  Healthcare  and  Smart
Healthcare Information Systems, a vast collection of health big data has been
amassed, which has potentials to enhance model accuracy without interfer-
ing with the algorithm itself.98The popularity of "data-driven" research based
on real-world data is on the rise,  which may lead to a shift  from the current
"problem-driven" pattern.99,100 It is important to consider the comprehensive-
ness  of  databases  when  dealing  with  real-world  data,  as  the  skewness  of
such data can pose challenges. A unified standard for multidimensional and
multimodal  medical  big  data,  including  clinical  basic  information,  medical
imaging,  physiological  signals,  laboratory  examination,  and  genes,  must  be
established for distinct diseases and patient groups.101
 

Large-scale real-world AI models
The GPT model has revolutionized the field of algorithms, spurring a tran-

sition  from  a  "small  workshop"  to  a  "giant  factory"  in  AI  research.102 As  a
result,  research  teams  are  now  actively  involved  in  organized  scientific
research  guided  by  the  technical  roadmap of  foundation  models,  leading  to
the development of  a  variety  of  models 103 ranging from large models,  such
as GPT,104which serve as the backbone to support AI tasks, to more complex
models,  such  as  Segment  Anything,105deep  learning  for  predicting  disease
progression, and reinforcement learning for optimizing the treatment plans.

In the development of algorithms, it is critical to consider the quality chal-
lenges posed by real-world data (Figure 8). For example, due to the complex-
ity  and  time-consuming  nature  of  medical  data  acquisition  and  annotation,
traditional  supervised  learning  approaches  are  insufficient  for  AI  medicine,
necessitating specialized research on algorithms for limited-sample and label-
deficient data.  Additionally,  given the ethical  considerations in medical  prac-
tices, it  is  essential  to  ensure  that  the  algorithm's  fairness  is  not  compro-
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mised  by  any  potential  gender,  racial,  family,  or  other  biases.  Despite  the
remarkable  outcomes  achieved  by  end-to-end  AI  models,  more  research  is
required  to  explore  how  to  integrate  them  with  existing  methods,  such  as
clinical  decision  support  systems,  medical  knowledge  graphs,  and  medical
gold  standards.106 Finally,  medical  research  not  only  investigates  "what"  but
also closely scrutinizes "why".  The current state of AI  methods can produce
highly  accurate  predictions  of  "association"  by  fitting  real-world  data  but  is
still  limited  in  its  ability  to  analyze  "causality".  Although  there  have  been
attempts by several researchers to provide interpretable justifications from a
clinical  perspective to aid in diagnosis,  these efforts have yet  to achieve the
goal of determining causality. 

Federated learning for data collaboration and privacy protection
In  the  field  of  AI,  data  plays  a  pivotal  role  and serves as  the  fundamental

component  of  model  training.107 However,  data  often  exists  in  the  form  of
data  silos.  Due  to  the  challenges  posed  by  privacy  protection  regulations,
traditional methods have been limited with data silos.108 In recent years, with
the significant advancement in privacy AI techniques, federated learning has
provided  a  novel  training  approach  to  build  personalized  models  without
compromising  user  privacy  which  opens  up  new  research  directions  to
address  privacy  concerns  associated  with  data  collection.109,110 Compared
with centralized training methods, federated learning is a distributed training
approach that enables individual users from different locations or sources to
collaboratively  learn  models  while  keeping  all  potentially  sensitive  personal
data  stored  on  their  respective  devices  (Figure  9).111-113 Through the  utiliza-

tion of federated learning, individual users can benefit from obtaining a well-
trained  machine  learning  model  without  the  need  to  transmit  their  privacy-
sensitive personal data to a central server. This offers significant promise for
establishing  connections  among  dispersed  medical  data  sources  while
ensuring  robust  privacy  protection.  As  a  novel  approach  for  cross-platform
data  collaboration  and  privacy  protection,  federated  learning  holds  the
promise  of  providing  more  secure  services  and  strategies  for  the  practical
deployment of models, further driving the advancement of AI in medicine. 

Realization of AI in vertical areas
It is essential to consider specific requirements of different scenarios, such

as pre-hospital screening, in-hospital diagnostic assistance, and post-hospi-
tal  health  management,  and  to  adjust  and  deploy  AI  models  accordingly.
Maintaining a balance between sensitivity and specificity for AI algorithms is
crucial in achieving desired outcomes. For instance, screening requires higher
sensitivity  to  avoid  missing  potential  positive  cases  and  delay  in  treatment,
while  diagnosis  requires  higher  specificity  to  avoid  unnecessary  treatment
that  could  cause  harm.114 Additionally,  it  is  imperative  to  systematically
develop strategies and workflows to facilitate collaboration between humans
(clinicians)  and  machines  (AI-assisted  diagnostic  systems).  As  a  tool,  AI
models  can  only  be  effective  when  being  utilized  properly  by  humans.  To
advance  the  field  of  AI  medicine,  it  is  imperative  to  provide  a  clear  and
detailed  account  of  the  potential  "side  effects"  of  AI  models,  akin  to  the
instructions  present  in  drug  manuals.  This  includes  information  about  the
recommended "dose" and "date" of AI model usage, as well as guidelines for
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their integration into current clinical pathways. Additionally, fostering collabo-
ration between  algorithm  researchers  and  clinicians  is  vital  to  the  develop-
ment  of  medical  AI.  To  this  end,  algorithm  researchers  should  prioritize  the
creation  of  user-friendly  tools,  starting  with  basic  logistic  regression.115

Furthermore,  clinicians  should  be  encouraged  to  explore  unconventional
questions and propose inquiries that have never been interrogated.

In  brief,  AI  has  attracted  considerable  attention  in  the  areas  of  medical
diagnosis, health management, and public health. Meanwhile, there are criti-
cal data and regulatory challenges associated with these applications, which
have been partially resolved by the continuous development of AI algorithms
and models. Multimodal data fusion techniques can also lead to wider picture
of diseases progression by integrating various types of data. Furtherly, feder-
ated learning makes it feasible to collaborate on data without worrying about
data  sharing  and  information  leakage.  Last  but  the  not  least,  to  make  AI
applications  in  medicine  fairer  and  more  accountable,  governments  and
organizations are updating pertinent laws and regulations.  Albeit  not perfect
yet, it  has become something of  a trend that  an increasing number of  clini-
cians and patients will  implement AI in their life and medical practice, which
in turn can generate more data and improve the performance of  medical  AI
and quality of our healthcare practices.
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