Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107682
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorQiao, Ten_US
dc.creatorQiao, Zen_US
dc.creatorSun, Sen_US
dc.creatorZhou, Sen_US
dc.date.accessioned2024-07-09T03:54:48Z-
dc.date.available2024-07-09T03:54:48Z-
dc.identifier.issn0377-0427en_US
dc.identifier.urihttp://hdl.handle.net/10397/107682-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.rights© 2024 Elsevier B.V. All rights reserved.en_US
dc.rightsThis is the preprint version of the following article: Qiao, T., Qiao, Z., Sun, S., & Zhou, S. (2024). An unconditionally energy stable linear scheme for Poisson–Nernst–Planck equations. Journal of Computational and Applied Mathematics, 443, 115759, which is available at https://doi.org/10.1016/j.cam.2024.115759.en_US
dc.subjectElectric double layeren_US
dc.subjectEnergy stabilityen_US
dc.subjectMass conservationen_US
dc.subjectPoisson–Nernst–Planck equationsen_US
dc.titleAn unconditionally energy stable linear scheme for Poisson–Nernst–Planck equationsen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author's file: A linear, mass conserved, energy stable scheme for Poisson-Nernst-Plank equationsen_US
dc.identifier.volume443en_US
dc.identifier.doi10.1016/j.cam.2024.115759en_US
dcterms.abstractThis paper proposes a linear, unconditionally energy-stable scheme for the Poisson–Nernst–Planck (PNP) equations. Based on a gradient-flow formulation of the PNP equations, the energy factorization approach is applied to linearize the logarithm function at the previous time step, resulting in a linear semi-implicit scheme. Numerical analysis is conducted to illustrate that the proposed fully discrete scheme has desired properties at a discrete level, such as unconditional unique solvability, mass conservation, and energy dissipation. Numerical simulations verify that the proposed scheme, as expected, is first-order accurate in time and second-order accurate in space. Further numerical tests confirm that the proposed scheme can indeed preserve the desired properties. Applications of our numerical scheme to the simulations of electrolyte solutions demonstrate that, as a linear energy stable scheme of efficiency, it will be promising in simulating complicated transport phenomena of charged systems.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of computational and applied mathematics, June 2024, v. 443, 115759en_US
dcterms.isPartOfJournal of computational and applied mathematicsen_US
dcterms.issued2024-06-
dc.identifier.eissn1879-1778en_US
dc.identifier.artn115759en_US
dc.description.validate202407 bcchen_US
dc.description.oaAuthor’s Originalen_US
dc.identifier.FolderNumbera2969a, a3885b-
dc.identifier.SubFormID48959, 51556-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextKing Abdullah University of Science and Technology (KAUST) through the grants BAS/1/1351-01 and URF/1/5028-01en_US
dc.description.fundingTextHong Kong Polytechnic University Grant 4-ZZLSen_US
dc.description.fundingTextCAS AMSS-PolyU Joint Laboratory of Applied Mathematicsen_US
dc.description.fundingTextThe National Natural Science Foundation of China (No. 12171319)en_US
dc.description.fundingTextScience and Technology Commission of Shanghai Municipality, China (No. 21JC1403700)en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AO)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Qiao_Unconditionally_Energy_Stable.pdfPreprint version1.71 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Author’s Original
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

43
Citations as of Apr 13, 2025

Downloads

51
Citations as of Apr 13, 2025

WEB OF SCIENCETM
Citations

4
Citations as of Jun 5, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.