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Abstract

In this paper, we introduce an efficient, stable, and accurate scheme for
Poisson-Nernst-Plank (PNP) equations. The efficiency is improved from the
previous non-linear scheme by linearized reformulation of the chemical po-
tential. A novel technique, called energy factorization, is applied in the
reformulation of PNP equations for the first time, so some desired properties
at the discrete level are still preserved. They are unique solvability, mass
conservation, and energy dissipation. It is proved that these properties are
unconditionally preserved at the discrete level with our proposed scheme.
We numerically demonstrate the accuracy of the scheme and simulate a two-
species system. Analysis of the results verifies the expected numerical prop-
erties, and in particular, the positivity preservation of the concentration is
testified numerically.

Keywords: Poisson-Nernst-Plank equations, mass conservation, energy
stability, electric double layer

1. Introduction1

Poisson-Nernst-Plank (PNP) equations are a set of partial differential2

equations which describe the transport of charged substances at the contin-3

uum level. The charged substance could be chemicals in the fluid medium and4
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ions through biological membranes, etc. Therefore, PNP equations serve as5

a popular model in various physical and biological applications [1; 2; 3; 4; 5].6

Many efforts have been made to solve the equations analytically and nu-7

merically [6; 7; 8; 9; 10; 11; 12; 13]. However, the PNP equations naturally8

involve non-linear coupling between species concentration and electrical po-9

tential, so the analytical solutions are unavailable in most cases. As a result,10

the choice of an appropriate numerical scheme is essential for the solution to11

PNP equations.12

A physical-meaningful result is one of the critical prerequisites for the13

numerical scheme. Concentration results are expected to satisfy certain con-14

ditions for the numerical results of PNP equations. For example, the total15

concentration should be conserved, and the concentration solution should16

always be positive. They are apparent in the physical model but not nec-17

essarily guaranteed for the numerical solution. In the last decades, many18

researchers have studied this area and proposed many schemes with different19

numerical methods like the finite difference method (FDM) and finite ele-20

ment method (FEM) [14; 15; 16; 17; 18]. Most of these schemes are proved21

to be mass conserved by the nature of the Nernst-Plank equation, but the22

positive concentration solution usually requires additional treatments. Re-23

cent literature reports various reformulation techniques (such as Slotboom24

transformation; logarithmic chemical potential) to achieve unconditional or25

conditional positivity [19; 20; 21; 22; 23; 24; 25; 26].26

Stability, efficiency, and accuracy are also critical for the design of the27

numerical scheme. In recent decades, energy dissipation of numerical scheme28

has been applied as a critical criterion for different problems like Navier29

Stokes equations, equations of state, and phase-field model [27; 28; 29; 30;30

31; 32; 33; 34; 35]. This is not only because dissipation of energy is ex-31

pected from the physical perspective, but it also guarantees the numerical32

scheme’s stability in a certain sense. Therefore, the energy dissipation of33

PNP equations at the discrete level has been demonstrated in many papers34

as well [36; 37; 38; 39]. Moreover, the balance between efficiency and accu-35

racy is also extensively studied. Both efficient non-linear solver and direct36

linearized scheme are proposed to save computational time [40; 41; 42; 43; 44].37

Nonetheless, we notice that the priority on efficiency often means the loss of38

other desired numerical properties. The energy factorization approach is pro-39

posed with this background [45]. It is initially for linearized reformulation40

of Peng-Robinson equation of state, while proved to satisfy energy stable41

condition.42
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In this paper, we propose a linear, mass conserved, energy stable scheme43

for the PNP equations. Unlike most of the classical schemes, the logarithm44

term in chemical potential is kept, although it results in additional non-45

linearity. The energy factorization approach is applied to reformulate it,46

while the scheme after factorization can still satisfy desired numerical prop-47

erties at the discrete level. The resulting semi-implicit time discrete scheme48

is therefore unique solvable, mass conserved, and energy stable. We apply49

CCFD for the spatial discretization and prove these properties are preserved50

in the fully discrete scheme. Validation of the scheme is conducted with a51

synthetical solution. Obtained results show that our scheme is first-order52

accurate in time and second-order accurate in space as expected. In addition53

to great accuracy, we also observe that the total concentration is conserved,54

and the total free energy is decaying during the simulation time. We spe-55

cially testify the positivity of concentration results as well, and numerical56

experiments show the minimum concentration keeps positive even under ex-57

treme cases. Time evolution of concentration profiles is finally presented for58

multi-stage dynamics, and a classical 1D solution for EDL is recovered from59

it.60

The rest of the paper is organized as follows. In section 2, we first intro-61

duce the formulation of PNP equations. In section 3, we propose the fully62

discrete scheme and prove that it enjoys three desired numerical properties.63

In section 4, numerical experiments are carried out to validate the proposed64

scheme. Finally, concluding remarks are provided in section 5.65

2. Physical model66

We consider a charged system within a bounded domain Ω. The dimen-67

sionless free energy F of the system is defined by68

F =

∫
Ω

N∑
i=1

ci(log ci − 1) +
1

2
(ρ0 +

N∑
i=1

zici)ψdx, (1)

where ci is the dimensionless concentration of the i-th species in the system69

with N species of charged substances; ρ0 is the dimensionless density of fixed70

charge; zi is the valence of the i-th species.71

The dimensionless PNP equations are then in the form of72

∂ci
∂t

= ∇ · (Dici∇µi) , (2)
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73

µi = log ci + ziψ, (3)
74

−∇ · (ϵ ∇ψ) = ρ0 +
N∑
i=1

zici, (4)

where t is the dimenionless time; Di is the diffusion constant of the i-th75

species; µi is the chemical potential w.r.t ci; ϵ is the permittivity; ψ is the76

electrical potential.77

We assume the boundary conditions for the system are periodic or homo-78

geneous Neumann. These boundary conditions are necessary for total mass79

conservation, and they can greatly simplify the later derivation together with80

divergence theorem. Note here we first simplify the free energy and divide it81

into electrostatic and entropic contributions. They can be represented as82

F electrostatic =
1

2

∫
Ω

(ρ0 +
N∑
i=1

zici)ψdx, (5)

83

F entropic =

∫
Ω

N∑
i=1

ci(log ci − 1)dx. (6)

We substitute the equation (4) back into the formulation of electrostatic84

energy85

F electrostatic =
1

2

∫
Ω

(−∇ · (ϵ ∇ψ))ψdx. (7)

With the Green’s first identity and boundary condition, we have86

F electrostatic = −1

2

∫
Ω

∇ · (ψnϵ ∇ψn)dx+
1

2

∫
Ω

(∇ψn · ϵ ∇ψn)dx

=
1

2

∫
Ω

ϵ|∇ψn|2dx.
(8)

To solve the PNP equations (2-4), most literatures substitute the equation87

(3) back to equation (2) as88

∂ci
∂t

= ∇ · (Dici∇(log ci + ziψ)) , (9)

and further simplify it with ci∇ log ci = ∇ci to89

∂ci
∂t

= ∇ · (Di(∇ci + ci∇ziψ)) . (10)

Different from most previous schemes, we keep the logarithm term and90

directly reformulate it as presented in the next section.91
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3. Numerical scheme92

In this section, we apply cell-centered finite difference method for spa-93

tial discretization and present the fully discretized scheme. For simplicity,94

we only consider a rectangular computational domain Ω in 2D, but it is95

straightforward to extend it to the 3D case or reduce it to the 1D case. We96

cover Ω = [0, Lx]× [0, Ly] with a uniform mesh size h = xj+1−xj = yk+1−yk,97

where 0 = x0 ≤ x1 ≤ · · · ≤ xM = Lx and 0 = y0 ≤ y1 ≤ · · · ≤ yW = Ly.98

We evaluate all three euqations in the scheme at cell centers (xj− 1
2
, yk− 1

2
) =99

(
xj−xj−1

2
, yk−yk−1

2
), j = 1, 2, · · ·,M and k = 1, 2, · · ·,W .100

To facilitate the derivation, we introduce the following discrete function
spaces defined by

νc = {c : (xj− 1
2
, yk− 1

2
) 7→ R, 1 ≤ j ≤M, 1 ≤ k ≤ W}, (11)

νu = {u : (xj, yk− 1
2
) 7→ R, 0 ≤ j ≤M, 1 ≤ k ≤ W}, (12)

νv = {v : (xj− 1
2
, yk) 7→ R, 1 ≤ j ≤M, 0 ≤ k ≤ W}. (13)

For c ∈ νc, we introduce the following discrete operators:101

δcx[c]j,k− 1
2
=
cj+ 1

2
,k− 1

2
− cj− 1

2
,k− 1

2

h
, (14)

δcy[c]j− 1
2
,k =

cj− 1
2
,k+ 1

2
− cj− 1

2
,k− 1

2

h
, (15)

Ac
x[c]j,k− 1

2
=
cj+ 1

2
,k− 1

2
+ cj− 1

2
,k− 1

2

2
, (16)

Ac
y[c]j− 1

2
,k =

cj− 1
2
,k+ 1

2
+ cj− 1

2
,k− 1

2

2
. (17)

Apparently, δcx[c]j,k− 1
2
, Ac

x[c]j,k− 1
2
∈ νu and δcy[c]j− 1

2
,k, A

c
y[c]j− 1

2
,k ∈ νv.102

Similarly for u ∈ νu and v ∈ νv, we define the following difference operators103

δux [u]j− 1
2
,k− 1

2
, δvy [v]j− 1

2
,k− 1

2
∈ νc:104

δux [u]j− 1
2
,k− 1

2
=
uj,k− 1

2
− uj−1,k− 1

2

h
, (18)

δvy [v]j− 1
2
,k− 1

2
=
vj− 1

2
,k − vj− 1

2
,k−1

h
. (19)
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With the defined discrete operator, we have the fully discrete scheme as105

cn+1
i − cni
∆t

= δux [DiA
c
x[c

n
i ]δ

c
x[µ

n+1
i ]] + δvy [DiA

c
y[c

n
i ]δ

c
y[µ

n+1
i ]], (20)

106

µn+1
i = log cni +

cn+1
i

cni
− 1 + ziψ

n+1, (21)

107

−δux [ϵδcx[ψn+1]]− δvy [ϵδ
c
y[ψ

n+1]] = ρ0 +
N∑
i=1

zic
n+1
i . (22)

We then prove the following desired properties are preserved in this fully108

discrete scheme: (1) unique solvability, (2) mass conservation, (3) energy109

stability .110

3.1. Unique solvability111

Theorem 3.1. The proposed solution numerical scheme always possesses a112

unique solution cn+1 ∈ νc, ψ
n+1 ∈ νc .113

Proof. We define the following discrete inner products:114

⟨c, C⟩ = h2
M∑
j=1

W∑
k=1

cj− 1
2
,k− 1

2
Cj− 1

2
,k− 1

2
, c, C ∈ νc, (23)

⟨u, U⟩ = h2
M∑
j=1

W∑
k=1

uj,k− 1
2
Uj,k− 1

2
, u, U ∈ νu, (24)

⟨v, V ⟩ = h2
M∑
j=1

W∑
k=1

vj− 1
2
,kVj− 1

2
,k, v, V ∈ νv. (25)

The discrete norms for c ∈ νc,u ∈ νu, and v ∈ νv are denoted by115

||c|| = ⟨c, c⟩1/2, ||u|| = ⟨u, u⟩1/2, ||v|| = ⟨v, v⟩1/2. (26)

We introduce two operators defined in papers [24; 26] to facilitate the116

derivation later, where117

Lhg = u, if g = −∇ · (ϵ∇u) , (27)

L′

hg = u, if g = −∇ · (Dic
n
i ∇u) . (28)
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By the definition of these operators, we have

Lh(ρ0 +
N∑
i=1

zic
n+1
i ) = ψn+1, (29)

L′

h(c
n+1
i − cni ) = −∆tµn+1

i . (30)

We can prove the numerical solution of the fully discrete scheme (equation118

(20 - 22)) is equivalent to the minimizer of a convex discrete functional:119

I[cn+1
i ] =

N∑
i=1

⟨cn+1
i (log cni − 1) +

(cn+1
i )2

2cni
, 1⟩

+
1

2∆t

N∑
i=1

⟨cn+1
i − cni , L

′

h(c
n+1
i − cni )⟩

+
1

2
⟨Lh(ρ0 +

N∑
i=1

zic
n+1
i ) , ρ0 +

N∑
i=1

zic
n+1
i ⟩.

(31)

Therefore, the solution must be unique, and the unique solvability is120

proved.121

3.2. Mass conservation122

Theorem 3.2. The total concentration for all species is constant with time.123

M∑
j=1

W∑
k=1

(cn+1
i )j− 1

2
,k− 1

2
=

M∑
j=1

W∑
k=1

(cni )j− 1
2
,k− 1

2
. (32)

Proof. Summing both sides of Equation (20) over j, k, we have124

M∑
j=1

W∑
k=1

(cn+1
i )j− 1

2
,k− 1

2
− (cni )j− 1

2
,k− 1

2

∆t
=

M∑
j=1

W∑
k=1

(δux [DiA
c
x[c

n
i ]δ

c
x[µ

n+1
i ]])j− 1

2
,k− 1

2

+
M∑
j=1

W∑
k=1

(δvy [DiA
c
y[c

n
i ]δ

c
y[µ

n+1
i ]])j− 1

2
,k− 1

2
.

(33)
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By the boundary conditions, the right-hand side becomes zero with the125

summation by parts. We read the left-hand side, and this gives us the mass126

conservation.127

M∑
j=1

W∑
k=1

(cn+1
i )j− 1

2
,k− 1

2
=

M∑
j=1

W∑
k=1

(cni )j− 1
2
,k− 1

2
. (34)

3.3. Energy stability128

Theorem 3.3. The total energy of the system keeps dissipated over time,129

where the discrete total free energy is defined as130

F n
h =

N∑
i=1

⟨cni , log cni − 1⟩+ 1

2
⟨ρ0 +

N∑
i=1

zic
n
i , ψ

n⟩. (35)

Proof. We substitute the equation 22 into the energy functional131

F n
h =

N∑
i=1

⟨cni , log cni − 1⟩+ 1

2
⟨−δux [ϵδcx[ψn]]− δvy [ϵδ

c
y[ψ

n]], ψn⟩. (36)

With the boundary conditions on summation by parts, we have132

F n
h =

N∑
i=1

⟨cni , log cni − 1⟩+ 1

2
ϵ⟨δcx[ψn], δcx[ψ

n]⟩+ 1

2
ϵ⟨δcy[ψn], δcy[ψ

n]⟩

=
N∑
i=1

⟨cni , log cni − 1⟩+ 1

2
ϵ(||δcx[ψn]||2 + ||δcy[ψn]||2).

(37)

We shall examine the energy difference between two neighboring time133

steps as134

F n+1
h − F n

h =
N∑
i=1

(⟨cn+1
i , log cn+1

i − 1⟩ − ⟨cni , log cni − 1⟩)

+
1

2
ϵ(||δcx[ψn+1]||2 + ||δcy[ψn+1]||2 − ||δcx[ψn]||2 − ||δcy[ψn]||2).

(38)

Note we treat the chemical potential in a semi-implicit manner in our135

proposed scheme. This formulation is actually derived from the energy fac-136

torization approach [45] to resolve the non-linearity. It raises from the con-137

cavity of the logarithm function. For any two neighboring time steps n + 1138
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and n, we have139

⟨log cn+1
i − log cni , 1⟩ ≤ ⟨ 1

cni
, cn+1

i − cni ⟩. (39)

Equation (39) can greatly simplify the derivation for energy dissipation140

in a way that141

N∑
i=1

(⟨cn+1
i , log cn+1

i − 1⟩ − ⟨cni , log cni − 1⟩)

≤
N∑
i=1

⟨log cni +
cn+1
i

cni
− 1, cn+1

i − cni ⟩,

(40)

The following inequality can also be readily proved:142

1

2
ϵ(||δcx[ψn+1]||2 + ||δcy[ψn+1]||2 − ||δcx[ψn]||2 − ||δcy[ψn]||2)

≤
N∑
i=1

⟨ ziψn+1 , cn+1
i − cni ⟩.

(41)

Combining inequalities in equation (40) and equation (41), we have143

F n+1
h − F n

h ≤
N∑
i=1

⟨ log cni +
cn+1
i

cni
− 1 + ziψ

n+1 , cn+1
i − cni ⟩

=
N∑
i=1

⟨ µn+1
i , cn+1

i − cni ⟩.

(42)

We then substitute equation (20) from our proposed scheme to reach the144

energy dissipation.145

F n+1
h − F n

h ≤ −
N∑
i=1

∆tDi(A
c
x[c

n
i ]⟨δcx[µn+1

i ], δcx[µ
n+1
i ]⟩+ Ac

y[c
n
i ]⟨δcy[µn+1

i ], δcy[µ
n+1
i ]⟩)

= −
N∑
i=1

∆tDi(A
c
x[c

n
i ] ||δcx[µn+1

i ]||2 + Ac
y[c

n
i ] ||δcy[µn+1

i ]||2) ≤ 0.

(43)
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It is clear that146

F n+1
h ≤ F n

h , (44)

and we complete the proof of energy dissipation.147

4. Numerical Experiments148

In this section, we present the results obtained from our proposed numer-149

ical scheme (equation (20 - 22)). Order of convergence is first testified with a150

synthetic exact solution. Three case studies are then conducted for sodium-151

chloride saline solution. Obtained results are analysed to show that the152

properties we prove analytically in the previous section is indeed preserved153

in numerical simulation. Positivity preserving of concentration solution is154

also numerically testified among them.155

4.1. Convergence test156

We first perform the numerical experiments for convergence test. For
simplicity, an exact solution with only two species is first constructed as

c1(x, y, t) = (1− exp(−t)) sin(πx) cos(πy) + 2, (45)

c2(x, y, t) = (1− exp(−t)) sin(πx) cos(πy) + 2, (46)

ψ(x, y, t) = − exp(−t) cos(πx) sin(πy). (47)

To recover the exact solution with our proposed scheme, we choose the157

computational domain Ω = [0, 2]× [0, 2], so the periodic boundary condition158

should naturally hold by the definition of trigonometric functions for exact159

solutions. Initial conditions and fixed charge distribution for numerical sim-160

ulation can be computed from the exact solution as the input. We set other161

constant parameters D1, D2, ϵ = 1 in this case, and valence z1 = 1, z2 = −1162

are assigned to the two species.163

We then conduct the numerical convergence study with different mesh164

sizes and time steps. Both L2 and L∞ discrete norm are computed for the165

difference of c1 between the obtained numerical results and exact solutions.166

From the results reported in table 1 and table 2, we can conclude that our167

scheme is indeed first-order accurate in time and second-order accurate in168

space as expected.169
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h ∆t L2 error order L∞ error order
0.2 0.2 0.42648 - 0.49817 -
0.1 0.1 0.15304 1.4786 0.20566 1.2764
0.05 0.05 0.066913 1.1935 0.09204 1.1599
0.025 0.025 0.031683 1.0786 0.043328 1.0870
0.0125 0.0125 0.015474 1.0339 0.020989 1.0456

Table 1: L2 and L∞ error and convergence order for c1 with ∆t = h.

h ∆t L2 error order L∞ error order
0.2 0.04 0.029158 - 0.039394 -
0.1 0.01 0.0089917 1.6972 0.013485 1.5466
0.05 0.0025 0.0023119 1.9595 0.003597 1.9065
0.025 0.000625 0.00057635 2.0040 0.000922 1.9640
0.0125 0.00015625 0.00014332 2.0077 0.00023318 1.9833

Table 2: L2 and L∞ error and convergence order for c1 with ∆t = h2.

4.2. Simulations of sodium-chloride saline solution.170

We next perform our numerical experiments in 2D to simulate a sodium-171

chloride saline solution. The computational domain is Ω = [0, 6]× [0, 6], and172

mesh size now is 0.05. For the initial condition, we randomly sample the173

concentration for two species with mean concentration of 0.5 on the entire174

domain. Positive fixed charges with ρ0 = 1.5 are placed at x = 1.5, and175

negative charges with ρ0 = −1.5 are placed symmetrically at x = 4.5. We set176

constant parameters D1, D2 = 0.304, ϵ = 0.185, z1 = 1, z2 = −1 respectively.177

We then run the simulation for 300 steps with the time step ∆t = 0.01 until178

the steady state. Concentration profile for the anion are plotted in Fig.1.179
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(b) time = 0.05
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(d) time = 3

Figure 1: Concentration profile at different time.

Two stages of dynamics can be observed from the results. Starting from180

the heterogeneous initial condition, the ions distribution turns homogeneous181

rapidly at t = 0.05 due to diffusion. After that, the electrical force domi-182

nates the second stage. Two fixed charge stripes attract opposite ions while183

repulsing the others, and reach the steady-state at t = 3. This case follows184

a study recently reported in literature [24] for a nonlinear PNP scheme, in185

which the logarithm term is also kept for energy stability but results in addi-186

tional nonlinearity. Our results show a fairly similar evolution to the previous187

scheme. Our scheme, however, is anticipated to be more effective because188

each time step only requires the solution of a linear system. Fig. 2 shows the189

evaluation of expected properties from obtained results. The constant total190

concentration result numerically proves the mass conservation, as the total191

free energy keeps dissipating during the simulation time.192
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(b) total free energy of the system

Figure 2: Evaluation of physics properties from numerical results.

We then push the numerical cases to the extreme by increasing the fixed193

charge density to ρ0 = 100 and ρ0 = −100 respectively. A large blank area194

can be observed in the steady-state results from Fig.3a. This is because most195

of the ions are attracted to x = 1.5 due to strong attraction while acting to196

heavy repulsion at x = 4.5. Under this extreme scenario, the concentration197

solutions at most of the location are close to zero. Nevertheless, our scheme198

can still ensure the positivity of the numerical solution, because the minimum199

concentration is always great than zero (Fig.3b).200

(a) concentration at t = 3 (b) minimum concentration

Figure 3: Numerical results from the 2D extreme case.

We next reset the location of fixed charge stripes to simulate the classical201

electrical double layer case [7; 10; 14]. They are now distributed at x = 0202

and x = 6 to simulate the ions that are absorbed into the walls of a parallel203

channel. We modify the fixed charge density for two stripes to be ρ0 = 1.5204

so the solution is symmetrical across the x-direction. The initial condition205

13



is also reset to be the homogeneous distribution for two ions respectively206

to satisfy the neutrality compatible condition. Fig.4 shows the results for207

both electrical potential and ion concentration. Symmetrical 2D results are208

reduced to 1D with given y-coordinates and half length in the x-direction.209

Time evolution profile is provided from initial state to steady state for the210

concentration of both ions. They are agreeing with the results we would211

anticipate from 1D solutions.212

(a) 2D electrical potential distribution

0 0.5 1 1.5 2 2.5 3

x

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

c

t = 0.1, cation

t = 0.5, cation

t = 5, cation

t = 0.1, anion

t = 0.5, anion

t = 5, anion

(b) species concentration at y = 3

Figure 4: Results for 2D with the existence of EDL.

5. Conclusion213

A linear numerical scheme is proposed for PNP equations in this paper.214

The energy factorization approach is applied to formulate this scheme and215

preserve desired numerical properties at the discrete level. We prove that216

unique solvability, mass conservation, and energy dissipation are uncondi-217

tionally kept with the fully discrete schemes. These properties are further218

validated with numerical experiments. Moreover, positivity preserving for219

concentration solution is also numerically testified. We expect this scheme220

to be implemented in more computational applications as its high efficiency221

and other superior properties.222
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