Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106921
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineeringen_US
dc.creatorTu, Yen_US
dc.creatorMak, MWen_US
dc.creatorChien, JTen_US
dc.date.accessioned2024-06-07T00:58:54Z-
dc.date.available2024-06-07T00:58:54Z-
dc.identifier.isbn978-1-5108-9683-3en_US
dc.identifier.urihttp://hdl.handle.net/10397/106921-
dc.description20th Annual Conference of the International Speech Communication Association: Crossroads of Speech and Language, INTERSPEECH 2019, Graz, Austria, 15-19 September 2019en_US
dc.language.isoenen_US
dc.publisherInternational Speech Communication Association (ISCA)en_US
dc.rightsCopyright © 2019 ISCAen_US
dc.rightsThe following publication Tu, Y., Mak, M.-W., Chien, J.-T. (2019) Variational Domain Adversarial Learning for Speaker Verification. Proc. Interspeech 2019, 4315-4319 is available at https://doi.org/10.21437/Interspeech.2019-2168.en_US
dc.titleVariational domain adversarial learning for speaker verificationen_US
dc.typeConference Paperen_US
dc.identifier.spage4315en_US
dc.identifier.epage4319en_US
dc.identifier.doi10.21437/Interspeech.2019-2168en_US
dcterms.abstractDomain mismatch refers to the problem in which the distribution of training data differs from that of the test data. This paper proposes a variational domain adversarial neural network (VDANN), which consists of a variational autoencoder (VAE) and a domain adversarial neural network (DANN), to reduce domain mismatch. The DANN part aims to retain speaker identity information and learn a feature space that is robust against domain mismatch, while the VAE part is to impose variational regularization on the learned features so that they follow a Gaussian distribution. Thus, the representation produced by VDANN is not only speaker discriminative and domain-invariant but also Gaussian distributed, which is essential for the standard PLDA backend. Experiments on both SRE16 and SRE18-CMN2 show that VDANN outperforms the Kaldi baseline and the standard DANN. The results also suggest that VAE regularization is effective for domain adaptation.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationProceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, Graz, Austria, 15-19 September 2019, p. 4315-4319en_US
dcterms.issued2019-
dc.identifier.scopus2-s2.0-85074699067-
dc.relation.conferenceInternational Speech Communication Association [Interspeech]en_US
dc.description.validate202405 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberEIE-0315-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS29256424-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
tu19_interspeech.pdf769.94 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

45
Citations as of May 11, 2025

Downloads

19
Citations as of May 11, 2025

SCOPUSTM   
Citations

41
Citations as of Jun 5, 2025

WEB OF SCIENCETM
Citations

35
Citations as of Jun 5, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.