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Abstract
Domain mismatch refers to the problem in which the distribu-
tion of training data differs from that of the test data. This pa-
per proposes a variational domain adversarial neural network
(VDANN), which consists of a variational autoencoder (VAE)
and a domain adversarial neural network (DANN), to reduce
domain mismatch. The DANN part aims to retain speaker
identity information and learn a feature space that is robust
against domain mismatch, while the VAE part is to impose vari-
ational regularization on the learned features so that they fol-
low a Gaussian distribution. Thus, the representation produced
by VDANN is not only speaker discriminative and domain-
invariant but also Gaussian distributed, which is essential for
the standard PLDA backend. Experiments on both SRE16 and
SRE18-CMN2 show that VDANN outperforms the Kaldi base-
line and the standard DANN. The results also suggest that VAE
regularization is effective for domain adaptation.
Index Terms: speaker verification, domain adaptation, domain
adversarial training, variational autoencoder

1. Introduction
Speaker verification (SV) is to determine whether the identity
of a test utterance matches that of a target speaker. To achieve
the best performance, SV systems are trained on data sharing
the same distribution with that of the test data (in the target do-
main or in-domain). In practice, however, due to the high cost
of data labeling, usually only a small amount of labeled data
from the target domain are available. When the distribution of
the source-domain training data differs from that of the target-
domain data, domain mismatch will occur, which poses a great
challenge to speaker verification. To overcome this problem,
domain adaptation (DA) is applied to transfer the knowledge
extracted from the source domain to the target domain.

Earlier DA methods are implemented in a supervised man-
ner, which require speaker labels in the target-domain data
[1, 2]. More recently, research in DA has been focusing on
the unsupervised situation where only some unlabeled target-
domain data are available besides large amount of labeled
source domain data. One approach to achieving unsupervised
DA is to hypothesize the speaker labels through clustering
[3, 4, 5]. With these hypothesized labels, we may adapt the
probabilistic linear discriminant analysis (PLDA) model to the
target domain by computing the in-domain covariance matrices
and then interpolating them with the out-of-domain covariance
matrices. Another category is to learn a domain-invariant space
for transforming the source domain i-vectors [6] and then use
the transformed i-vectors to train a PLDA model. For example,
Aronowitz [7] introduced the inter dataset variability compensa-
tion (IDVC) based on nuisance attribute projection (NAP) [8] to
reduce the domain mismatch in the i-vector space. Instead of di-

rectly capturing the mismatch between the out-domain data and
in-domain data as in inter dataset variability (IDV) [9], Rah-
man et al. [10] measured the mismatch relative to the global
mean of i-vectors and relocated both in-domain and out-domain
i-vectors into a dataset-invariant space. In [11], autoencoder-
based domain adaptation was proposed to transfer channel in-
formation from the source domain to the target domain. In
[12, 13], Lin et al. applied maximum mean discrepancy to mea-
sure the degree of domain mismatch across multiple domains
and incorporated the measure into the objective function for
training autoencoders. The bottleneck features extracted from
the autoencoders are shown to be less domain dependent, re-
sulting in performance gain in SRE16 data.

With the emergence of generative adversarial networks
(GANs) [14], adversarial learning has been applied for DA to
create a domain-invariant space [15, 16, 17]. For instance, in
[18], an encoder and a discriminator network are adversarially
trained to produce bottleneck features that are robust against
noise. Wang et al. [19] applied domain adversarial train-
ing (DAT) [16] to generate speaker discriminative and domain-
invariant feature representations by incorporating a speaker
classifier into an adversarial autoencoder, which outperforms
traditional DA approaches on the 2013 domain adaptation chal-
lenge. Rohdin et al. [20] also followed the DAT framework
but implemented the adversarial learning in an end-to-end fash-
ion to minimize language mismatch while retaining speaker dis-
crimination capability.

Although adversarial learning based unsupervised DA [18,
19] has greatly boosted the performance of SV systems under
domain mismatch scenarios, the adversarial training may lead
to non-Gaussian latent vectors, which do not meet the Gaus-
sianity requirement of the PLDA backend. This problem can
be solved by using heavy-tailed PLDA [21, 22] or applying i-
vector length normalization [23]. However, the former is more
computationally expensive than the Gaussian PLDA and the lat-
ter is not really a Gaussianization procedure but a sub-optimal
compromise. Recently, there have been some work trying to
Gaussianize the distribution of speaker embeddings obtained by
neural networks, e.g., [24] applied Gaussian-constrained train-
ing by incorporating an l2-regularizer into the standard cross-
entropy loss. Kingma and Welling [25] proposed the variational
autoencoders (VAEs) as a solution to performing inference in
directed probabilistic models whose latent variables have in-
tractable posterior distributions. One desirable property of a
VAE is that its KL-divergence term can be considered as a reg-
ularizer that constrains the encoder to produce latent vectors
that follow a desired distribution. Our method leverages this
property to encourage the encoder to produce Gasussian latent
vectors, which will be amenable to PLDA modeling. A simi-
lar approach using VAE for Gaussian regularization for speaker
embeddings was proposed in [26]; however, it is not targeted to
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address the domain mismatch problem which is the main focus
of this paper.

In this paper, we adopt the idea of the domain adversar-
ial neural network (DANN) in [16, 19] for unsupervised DA,
aiming to produce both speaker discriminative and domain-
invariant features. Simultaneously, we incorporate variational
regularization into DAT to ensure that the produced represen-
tations follow a Gaussian distribution so that we can directly
apply the Gaussian PLDA model. The resulting network is
referred to as variational domain adversarial neural network
(VDANN). To our best knowledge, VDANN is the first to com-
bine both DAT and VAE for domain-invariant speaker verifica-
tion.

2. Methodology
Suppose we have a training set X = {X (r)}Rr=1 comprising
samples fromR domains, whereX (r) = {x(r)

1 , . . . ,x
(r)
Nr
} con-

tains Nr samples from the r-th domain. Also we denote y and
d as the one-hot speaker and domain labels, respectively.

2.1. Variational Domain Adversarial Neural Network
(VDANN)

Although DANN has been shown to be superior to conventional
DA [19], there is no guarantee that the learned features follow a
Gaussian distribution, which is essential for the Gaussian PLDA
backend. To alleviate this limitation, we incorporate a VAE into
the DAT so that the learned features are not only speaker dis-
criminative and domain-variant but also Gaussian distributed.

Originally, VAE was proposed to solve the variational ap-
proximate inference problem by maximizing the evidence lower
bound (ELBO) [25]:

LELBO(θ, φ) =

R∑
r=1

Nr∑
i=1

{
−KL

(
qφ(z|x(r)

i )
∥∥pθ(z))

+ E
qφ(z|x

(r)
i )

[
log pθ

(
x
(r)
i |z

)]}
, (1)

where φ and θ are parameters of the encoder and decoder,
respectively. qφ(z|x) is an approximate posterior to the in-
tractable true posterior pθ(z|x), which represents a recogni-
tion model encoding input samples into the latent space, while
pθ(x|z) denotes a generative model which decodes latent rep-
resentations back to the original data space.

One desirable property of VAE is that the first term on the
right-hand side of Eq. 1 can be considered as a regularizer that
constrains the variational posterior qφ(z|x) to be close to the
desired prior pθ(z). Therefore, if we constrain pθ(z) to be
a multivariate Gaussian distribution, the encoder will likely to
produce Gasussian latent vectors, which is amenable to PLDA
modeling.

Assume that pθ(z) = N (z;0, I) and the true posterior also
follows a Gaussian distribution with an approximate diagonal
covariance matrix. Then the approximate posterior will take the
following form

log qφ(z|xi) = logN
(
z;µi,σ

2
i I
)
, (2)

where the mean µi and standard derivation σi are outputs of the
encoder given input xi, and they are parameterized by φ. Ap-
plying the reparameterization trick in sampling latent variables
from the variational approximate posterior, we obtain the l-th
latent sample zil = µi + σi � εl, where εl ∼ N (0, I) and �
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Figure 1: Schematic of VDANN. The solid and dashed arrows
represent network connections and stochastic sampling, respec-
tively.

is the Hadamard product. Substitute these terms into Eq. 1, we
have the Gaussian VAE loss [25]:

LVAE (θ, φ) ' −
R∑
r=1

Nr∑
i=1

{
1

2

J∑
j=1

[
1 + log

(
σ
(r)
ij

)2
−
(
µ
(r)
ij

)2
−
(
σ

(r)

ij

)2]
+

1

L

L∑
l=1

log pθ
(
x
(r)
i |zil

)}
, (3)

where J is the dimension of z and L denotes the number of
latent samples. In practice, we set L = 1.

As shown in Figure 1, the proposed VDANN consists of a
speaker predictor C, a domain classifier D and a VAE. The lat-
ter contains an encoderE and a decoderG. The network param-
eters are denoted as θc, θd, φe and θg , respectively. Through ad-
versarial training, the VDANN learns a domain-invariant space
across multiple domains. Specifically, applying adversarial
training on E while keeping θd fixed together with minimiz-
ing the cross-entropy loss of C with respect to φe will make E
to produce a domain-invariant but speaker discriminative repre-
sentation through the nodes denoted by µ in Figure 1. While
it is also possible to use the concatenation of µ and logσ2

as the representation, our preliminary experiments suggest that
this gives almost the same performance as using µ only.

To train this network, we define the loss of VDANN as:

LVDANN(θc, θd, φe, θg) = LC(θc, φe)− αLD(θd, φe)
+ βLVAE(φe, θg), (4)

where

LC(θc, φe) =
R∑
r=1

Epdata(x
(r))

{
−

K∑
k=1

y
(r)
k logC

(
E
(
x(r)

))
k

}
,

(5)

LD(θd, φe) =
R∑
r=1

Epdata(x
(r))

{
− logD

(
E
(
x(r)

))
r

}
,

(6)

and LVAE takes similar form as in Eq. 3 except that the param-
eters of the encoder and decoder change to φe and θg , respec-
tively. The subscript k in the categorical cross-entropy loss of
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the speaker classifier C in Eq. 5 indexes the speakers and rep-
resents the k-th output of the classifier. The hyperparameters
α and β control the contribution of individual losses that shape
the features produced by E.

During training, for each mini-batch, we first optimizeD by
minimizing the domain classification loss. Parameters of D are
then fixed while training the remaining parts of the VDANN. To
incorporate speaker information into E, speaker prediction loss
is minimized; simultaneously we maximize the domain clas-
sification loss so that we can learn a domain-invariant space
for E. Moreover, the VAE loss is minimized to regularize the
learned features to be Gaussian. To summarize, we optimize the
VDANN as follows:

min
θc,φe,θg

max
θd
LVDANN(θc, θd, φe, θg). (7)

Eq. 7 can be divided into the following min-max procedure:

θ̂d = argmax
θd

LVDANN(θ̂c, θd, φ̂e, θ̂g), (8)(
θ̂c, φ̂e, θ̂g

)
= argmin

θc,φe,θg

LVDANN(θc, θ̂d, φe, θg), (9)

where symbols with a hat (e.g., θ̂c) on the right-hand side of
Eq. 8 and Eq. 9 mean that they are fixed when optimizing the
target parameters. After training, we may extract the trans-
formed features from the mean layer of the encoder E (denoted
by µ in Figure 1). Since the variational approximate posterior is
regularized to follow a Gaussian distribution, features produced
from the encoder will also likely to be Gaussian.

2.2. Relationship with Domain Adversarial Neural Net-
work (DANN)

In [19], DANN was applied to produce features that are not
only speaker discriminative but invariant to domain shift. As
the training data in [19] come from two domains, R = 2. A
standard DANN consists of three networks: a feature extractor
E, a speaker predictor C and a domain classifier D, which is a
special case of VDANN. By setting β = 0 in Eq. 4, we have the
loss function of DANN:

LDANN(θc, θd, φe) = LC(θc, φe)− αLD(θd, φe), (10)

where θc, θd and φe are the parameters for C, D, E, respec-
tively. LC andLD are the same as Eq. 5 and Eq. 6, respectively.
α controls the trade-off between the two objectives whose gradi-
ent is back-propagated into the feature extractor during training.
The parameters are optimized as follows:

θ̂d = argmax
θd

LDANN

(
θ̂c, θd, φ̂e

)
, (11)(

θ̂c, φ̂e
)
= argmin

θc,φe

LDANN

(
θc, θ̂d, φe

)
. (12)

Since there is no extra constraint on the distribution of fea-
tures learned from DANN, the adversarial training may lead to
non-Gaussian latent vectors, which do not meet the Gaussianity
requirement of the PLDA backend.

3. Experimental Setup
The experiments were conducted based on x-vectors [27] and
SV performance was evaluated on the NIST SRE16 and SRE18-
CMN2.

3.1. Acoustic Features and X-vector Extraction

We used the Kaldi’s SRE16 recipe1 to extract 23-dimensional
MFCCs, followed by energy-based VAD. After that, 512-
dimensional x-vectors were extracted using the pre-trained
DNN available from the Kaldi repository.

3.2. VDANN and DANN Training

We used data from four domains to train the VDANN and
DANN. The statistics of the training data are shown in Table 1.
Note that each training set is a subset of the original set. For ex-
ample, the minimum number of x-vectors per speaker is 30 for
both SRE04–10 and Voxceleb1. SwitchBoard II was selected
from Switchboard 2 Phases I–III to ensure that there are at least
20 x-vectors for each speaker, while each speaker in the SITW
set has at least 15 x-vectors.

Table 1: Statistics of training sets for VDANN

Dataset No. of speakers No. of utterances

SRE04–10 1,806 54,180
Voxceleb1 1,251 37,530

SwitchBoard II 273 6,962
SITW 203 3,700

As shown in Figure 1, there are four sub-networks in the
VDANN. The encoder in the VAE part has two hidden layers,
and the number of nodes in each hidden layer is 1024. We used
ReLU as the activation function in each layer, followed by batch
normalization. The dimension of the latent space was set to
400. The configuration of the decoder is the same as that of
the encoder. The output layers of both the encoder and decoder
are linear. For the speaker classifier, we used a 1024-1024 hid-
den layer structure with Leaky ReLU activations, and batch nor-
malization and dropout layers were appended after each layer.
The output layer has 3533 nodes with a softmax function. The
configuration of the domain classifier is similar to that of the
speaker classifier except that the number of nodes in the two
hidden layers are 128 and 32, respectively. It has 4 nodes in the
output layer corresponding to the 4 domains in Table 1.

The DANN has the same structure as the VDANN, except
for the missing of the VAE decoder and the sampling procedure.
Another difference is that we used the loss function in Eq. 10
rather than the loss function in Eq. 4.

For DANN, we set α = 0.1 in Eq. 10. For VDANN, we set
α = 0.1, β = 0.1 in Eq. 4 and set the standard deviation of all
components in ε in the stochastic sampling to 0.01.

3.3. PLDA Training and Scoring

We used the standard Gaussian PLDA backend for scoring.
For the SRE16 evaluation task, the baseline PLDA model was
trained on the NIST SRE 2004–2010 datasets and their aug-
mented versions; while for the SRE18 evaluation experiments,
the Mixer6 dataset and its augmentation were also added to the
training sets. The augmentation step also follows the Kaldi’s
SRE16 recipe. Before PLDA training, x-vectors or their DNN-
transformed versions were projected to a 150 dimensional space
by an LDA transformation matrix, followed by length normal-
ization. The LDA projection matrix was trained on the same
dataset as in training PLDA models.

1http://kaldi-asr.org/
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Figure 2: Quantile-quantile (Q–Q) plots of the 11-th (the 1st
row), 111-th (the 2nd row), and 211-th (the 3rd row) com-
ponents of x-vectors (the 1st column), DANN-transformed x-
vectors (the 2nd column), and VDANN-transformed x-vectors
(the 3rd column). The vertical and horizontal axes correspond
to the samples under test and the samples drawn from a stan-
dard normal distribution, respectively. The red line repre-
sents the situation of perfectly Gaussian. The p-values above
the graphs were obtained from Shapiro–Wilk tests in which
p > 0.05 means failing to reject the null hypothesis that the
test samples come from a Gaussian distribution.

Since there is severe domain mismatch between the PLDA
training sets and SRE16/SRE18 evaluation data, development
data were used for PLDA adaptation. Specifically, SRE16 un-
labeled data were used to adapt the PLDA models for SRE16,
while we used SRE18 unlabeled data for SRE18 PLDA adap-
tation. During adaptation for the baseline, the unlabeled data
were used to adapt the out-of-domain PLDA model so that the
adapted model better matches the statistics of the in-domain
data. The adaptation is detailed in the Kaldi’s SRE16 recipe.

The latent vectors extracted from VDANN and DANN sys-
tems followed the same pre-processing as the baseline except
that the transformed x-vectors (µ in Figure 1) rather than the
original x-vectors were used for centering, LDA training, PLDA
training, adaptation and scoring.

4. Results and Discussions
Figure 2 shows the normal Q–Q plots of three randomly se-
lected dimensions of x-vectors and the x-vectors transformed
by DANN and VDANN. Evidently, the distribution of VDANN-
transformed x-vectors is closer to a Gaussian distribution than
the other two. This suggests that the VAE loss can make the la-
tent vectors z’s to follow a Gaussian distribution. The p-values
obtained from Shapiro–Wilk tests [28] also suggest that the dis-
tribution of VDANN-transformed vectors is the closest to the
standard Gaussian.

We followed the Kaldi’s SRE16 recipe for SRE16/18 eval-
uation. For the baseline, the x-vectors were centered, LDA-
transformed and length normalized before PLDA scoring. The
same preprocessing was applied to the transformed x-vectors
for the DANN and VDANN systems.

Table 2 shows the pooled evaluation performance of the
systems in SRE16. From the left part of the table, without Kaldi

PLDA adaptation, we can see that VDANN reduces the domain
mismatch in both EER and minDCF compared to the baseline.
Although DANN reduces the minDCF to some extent, it impairs
the EER. The right part presents the results using Kaldi’s PLDA
adaptation as an extra adaptation. We see that Kaldi’s PLDA
adaptation is very powerful because even though the x-vectors
have been processed by VDANN, they outperform the baseline
by a small margin only. Comparing the results of VDANN with
those of DANN reveals that applying variational regularization
on the transformed x-vectors is effective for domain adaptation.

Performance on SRE18-CMN2 is shown in Table 3. From
the table, we obtain similar conclusions as in SRE16: con-
straining the transformed x-vector distribution to be Gaussian
via VAE is beneficial for overcoming domain mismatch.

The P -values of the McNemar’s test [29] between the
DANN and VDANN systems are 0 and 4.72×10−4 for SRE16
and SRE18 without PLDA adaptation, respectively, while they
are 0 and 4.14× 10−7 with PLDA adaptation. This means that
the improvement of VDANN over DANN is statistically signif-
icant since we have P < α (typically α is 0.05, 0.01 or 0.001).

Table 2: Performance on SRE16

No PLDA adaptation PLDA adaptation

EER minDCF EER minDCF

Baseline 11.30 0.890 8.27 0.604
DANN 11.62 0.822 8.43 0.599

VDANN 11.17 0.798 8.21 0.584

Table 3: Performance on SRE18-CMN2

No PLDA adaptation PLDA adaptation

EER minDCF EER minDCF

Baseline 11.21 0.676 9.60 0.575
DANN 10.82 0.678 9.28 0.583

VDANN 10.25 0.667 9.23 0.576

5. Conclusions
In this paper, we proposed a network called VDANN to reduce
domain mismatch. VDANN incorporates a VAE into domain
adversarial training to impose a constraint on the distribution of
the transformed x-vectors so that they are not only speaker dis-
criminative and domain-invariant, but also conform to a Gaus-
sian distribution. Experimental results show that VDANN is
capable of reducing domain mismatch. The fact that VDANN
consistently outperforms the standard DANN in both EER and
minDCF on SRE16 and SRE18-CMN2 suggests that VAE reg-
ularization is effective for domain adaptation.
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