Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106814
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Logistics and Maritime Studiesen_US
dc.creatorChu, Zen_US
dc.creatorYan, Ren_US
dc.creatorWang, Sen_US
dc.date.accessioned2024-06-04T07:39:55Z-
dc.date.available2024-06-04T07:39:55Z-
dc.identifier.issn0308-8839en_US
dc.identifier.urihttp://hdl.handle.net/10397/106814-
dc.language.isoenen_US
dc.publisherRoutledgeen_US
dc.rights© 2023 Informa UK Limited, trading as Taylor & Francis Groupen_US
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in Maritime Policy & Management on 25 May 2023 (published online), available at: http://www.tandfonline.com/10.1080/03088839.2023.2217168.en_US
dc.subjectMaritime transporten_US
dc.subjectport managementen_US
dc.subjectrandom foresten_US
dc.subjectvessel arrival predictionen_US
dc.subjectvessel arrival punctualityen_US
dc.titleEvaluation and prediction of punctuality of vessel arrival at port : a case study of Hong Kongen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1096en_US
dc.identifier.epage1124en_US
dc.identifier.volume51en_US
dc.identifier.issue6en_US
dc.identifier.doi10.1080/03088839.2023.2217168en_US
dcterms.abstractThe punctuality of vessel arrival at port is a crucial issue in contemporary port operations. Uncertainties in vessel arrival can lead to port handling inefficiency and result in economic losses. Although vessels typically report their estimated time of arrival (ETA) en-route to the destination port, their actual time of arrival (ATA) often differs from the reported ETA due to various factors. To address this issue and enhance terminal operational efficiency, we first quantitatively evaluate vessel arrival uncertainty in different time slides prior to arrival at the port using 2021 vessel arrival data for Hong Kong port (HKP). Our results confirm that the overall vessel arrival uncertainty decreases as vessels approach the HKP. Then, we implement a random forest (RF) approach to predict vessel arrival time. Our model reduces the error in ship ATA data prediction by approximately 40% (from 25.5 h to 15.5 h) using the root mean squared error metric and 20% (from 13.8 h to 11.0 h) using the mean absolute error metric compared with the reported ETA data. The proposed vessel arrival time evaluation and prediction models are applicable to port management and operation, laying the foundation for future research on port daily operations.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMaritime policy and management, 2024, v. 51, no. 6, p. 1096-1124en_US
dcterms.isPartOfMaritime policy and managementen_US
dcterms.issued2024-
dc.identifier.scopus2-s2.0-85160531531-
dc.identifier.eissn1464-5254en_US
dc.description.validate202406 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2751-
dc.identifier.SubFormID48230-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Chu_Evaluation_Prediction_Punctuality.pdfPre-Published version1.23 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

46
Citations as of Apr 14, 2025

Downloads

69
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

7
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

5
Citations as of Oct 3, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.