Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106757
PIRA download icon_1.1View/Download Full Text
Title: Tribological behaviors in titanium sheet and tube forming at elevated temperatures : evaluation and modeling
Authors: Ma, J
Li, H
Wang, D
Fu, MW 
Tao, ZJ
Issue Date: Jul-2018
Source: International journal of advanced manufacturing technology, July 2018, v. 97, no. 1-4, p. 657-674
Abstract: Warm forming has been an efficient approach to exploiting the forming potential of titanium alloy sheet and tube materials. However, the tribological condition between Ti-alloy sheet/tube and tools at elevated temperatures is a non-trivial issue and has yet not been fully explored and articulated. Taking CP-3 tube and Ti-6Al-4V sheet as case study materials, the tribological behaviors between Ti-alloy sheet/tube and tools at elevated temperature are revealed and modeled. The main results show that (1) by using the high-temperature twist-compression test combined with the design of experiments, the suitable tool materials, surface modification approaches, and lubricants are determined for warm forming of Ti-alloy sheet/tube, and the significant influential factors and their affecting rules/mechanisms on the coefficient of friction are identified; (2) a pressure- and temperature-related dynamic friction model is developed and implemented in the 3D-FE simulation of warm forming via ABAQUS/VFRIC; taking warm rotary draw bending of CP-3 tube as an application, the proposed friction model is experimentally validated, and the comparisons between the experimental results and the simulated ones indicate that the proposed model is much better than the Coulomb friction model in prediction of forming defects, such as wall thinning/thickening and wrinkling instability.
Keywords: Coefficient of friction
Elevated temperatures
Friction model
Titanium alloy sheet/tube
Tribological behaviors
Publisher: Springer
Journal: International journal of advanced manufacturing technology 
ISSN: 0268-3768
EISSN: 1433-3015
DOI: 10.1007/s00170-018-1985-y
Rights: © Springer-Verlag London Ltd., part of Springer Nature 2018
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s00170-018-1985-y.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Fu_Tribological_Behaviors_Titanium.pdfPre-Published version6.41 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

11
Citations as of Jun 30, 2024

Downloads

2
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

16
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

14
Citations as of Jun 27, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.