Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106720
DC FieldValueLanguage
dc.contributorDepartment of Applied Physics-
dc.contributorResearch Institute for Advanced Manufacturing-
dc.creatorWong, LW-
dc.creatorYang, K-
dc.creatorHan, W-
dc.creatorZheng, X-
dc.creatorWong, HY-
dc.creatorTsang, CS-
dc.creatorLee, CS-
dc.creatorLau, SP-
dc.creatorLy, TH-
dc.creatorYang, M-
dc.creatorZhao, J-
dc.date.accessioned2024-06-03T02:11:44Z-
dc.date.available2024-06-03T02:11:44Z-
dc.identifier.issn1476-1122-
dc.identifier.urihttp://hdl.handle.net/10397/106720-
dc.language.isoenen_US
dc.publisherNature Publishing Groupen_US
dc.rights.en_US
dc.titleDeciphering the ultra-high plasticity in metal monochalcogenidesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage196-
dc.identifier.epage204-
dc.identifier.volume23-
dc.identifier.issue2-
dc.identifier.doi10.1038/s41563-023-01788-7-
dcterms.abstractThe quest for electronic devices that offer flexibility, wearability, durability and high performance has spotlighted two-dimensional (2D) van der Waals materials as potential next-generation semiconductors. Especially noteworthy is indium selenide, which has demonstrated surprising ultra-high plasticity. To deepen our understanding of this unusual plasticity in 2D van der Waals materials and to explore inorganic plastic semiconductors, we have conducted in-depth experimental and theoretical investigations on metal monochalcogenides (MX) and transition metal dichalcogenides (MX2). We have discovered a general plastic deformation mode in MX, which is facilitated by the synergetic effect of phase transitions, interlayer gliding and micro-cracks. This is in contrast to crystals with strong atomic bonding, such as metals and ceramics, where plasticity is primarily driven by dislocations, twinning or grain boundaries. The enhancement of gliding barriers prevents macroscopic fractures through a pinning effect after changes in stacking order. The discovery of ultra-high plasticity and the phase transition mechanism in 2D MX materials holds significant potential for the design and development of high-performance inorganic plastic semiconductors.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationNature materials. Feb. 2024, v. 23, no. 2, p. 196-204-
dcterms.isPartOfNature materials-
dcterms.issued2024-02-
dc.identifier.scopus2-s2.0-85181760394-
dc.identifier.eissn1476-4660-
dc.description.validate202405 bcch-
dc.identifier.FolderNumbera2742aen_US
dc.identifier.SubFormID48186en_US
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2025-02-28en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2025-02-28
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

5
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

2
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

2
Citations as of Jun 27, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.