Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106530
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorZhu, Len_US
dc.creatorRuan, Hen_US
dc.creatorChen, Aen_US
dc.creatorGuo, Xen_US
dc.creatorLu, Jen_US
dc.date.accessioned2024-05-09T00:54:05Z-
dc.date.available2024-05-09T00:54:05Z-
dc.identifier.issn1359-6454en_US
dc.identifier.urihttp://hdl.handle.net/10397/106530-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.en_US
dc.rights© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Zhu, L., Ruan, H., Chen, A., Guo, X., & Lu, J. (2017). Microstructures-based constitutive analysis for mechanical properties of gradient-nanostructured 304 stainless steels. Acta Materialia, 128, 375-390 is available at https://doi.org/10.1016/j.actamat.2017.02.035.en_US
dc.subjectBimodal grain size distributionen_US
dc.subjectGradient-nanograined metalsen_US
dc.subjectGradient-nanotwinned metalsen_US
dc.subjectMechanical propertiesen_US
dc.subjectMicromechanical modelen_US
dc.subjectMicrostructural sizeen_US
dc.titleMicrostructures-based constitutive analysis for mechanical properties of gradient-nanostructured 304 stainless steelsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage375en_US
dc.identifier.epage390en_US
dc.identifier.volume128en_US
dc.identifier.doi10.1016/j.actamat.2017.02.035en_US
dcterms.abstractAustenite stainless steels with gradient nanostructure exhibit exceptional combination of high yield strength and high ductility. In order to describe their structure-property relation, a theoretical model is proposed in this work, in which the depth-dependent bimodal grain size distribution and nanotwin-nanograin composite structure are taken into account. The micromechanical model and the Voigt rule of mixture are adopted in deriving the constitutive relations. Furthermore, the evolution and influence of the nano/micro cracks/voids are considered for predicting the failure strain. The numerical results based on the theoretical model agree well with experimental results in terms of the yield strength, ductility, and the strain hardening rate, demonstrating that the proposed model can well describe the mechanical properties of gradient-nanostructured austenite stainless steels. We further study the variations of the yield strength and ductility of gradient-nanograined and gradient-nanotwinned 304 stainless steels with different distribution of grain size and twin spacing along the depth, which shows that the present model can be applied to optimize the combination of strength and ductility of the gradient-nanostructured metals by tuning depth-dependent distributions of microstructures.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationActa materialia, 15 Apr. 2017, v. 128, p. 375-390en_US
dcterms.isPartOfActa materialiaen_US
dcterms.issued2017-04-15-
dc.identifier.scopus2-s2.0-85013759016-
dc.identifier.eissn1873-2453en_US
dc.description.validate202405 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0811-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; National Key Basic Research Program; Ministry of Education of China; Croucher Fundation; The Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6725812-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Ruan_Microstructures-Based_Constitutive_Analysis.pdfPre-Published version3.22 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

11
Citations as of Jun 30, 2024

Downloads

2
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

91
Citations as of Jun 27, 2024

WEB OF SCIENCETM
Citations

88
Citations as of Jun 27, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.