Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106525
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorKefayati, GHRen_US
dc.creatorTang, Hen_US
dc.date.accessioned2024-05-09T00:54:03Z-
dc.date.available2024-05-09T00:54:03Z-
dc.identifier.issn0360-3199en_US
dc.identifier.urihttp://hdl.handle.net/10397/106525-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.en_US
dc.rights© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Kefayati, G. H. R., & Tang, H. (2017). Simulation of natural convection and entropy generation of MHD non-Newtonian nanofluid in a cavity using Buongiorno's mathematical model. International Journal of Hydrogen Energy, 42(27), 17284-17327 is available at https://doi.org/10.1016/j.ijhydene.2017.05.093.en_US
dc.subjectBuongiorno modelen_US
dc.subjectEntropyen_US
dc.subjectFDLBMen_US
dc.subjectMHDen_US
dc.subjectNatural convectionen_US
dc.subjectNon-Newtonian nanofluiden_US
dc.titleSimulation of natural convection and entropy generation of MHD non-Newtonian nanofluid in a cavity using Buongiorno's mathematical modelen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage17284en_US
dc.identifier.epage17327en_US
dc.identifier.volume42en_US
dc.identifier.issue27en_US
dc.identifier.doi10.1016/j.ijhydene.2017.05.093en_US
dcterms.abstractIn this paper, natural convection and entropy generation of non-Newtonian nanofluid, using the Buongiorno's mathematical model in a cavity in the presence of a uniform magnetic field has been analyzed by Finite Difference Lattice Boltzmann method (FDLBM). The cavity is filled with nanofluid which the mixture shows shear-thinning behavior. This study has been performed for the certain pertinent parameters of Rayleigh number (Ra = 104 and 105), Hartmann number (Ha = 0, 15, 30), buoyancy ratio number (Nr = 0.1, 1, and 4), power-law index (n = 0.4–1), Lewis number (Le = 1, 5, and 10), Thermophoresis parameter (Nt = 0.1, 0.5, 1), and Brownian motion parameter (Nb = 0.1, 1, 5). The Prandtl number is fixed at Pr = 1. The Results indicate that the augmentation of Hartmann number causes heat and mass transfer to drop. The increase in Rayleigh number enhances heat and mass transfer for various power-law indexes. The alteration of the power-law index changes heat and mass transfer. In addition, the rise of Hartmann number declines the shear-thinning behavior. The increase in the Lewis number augments mass transfer while it causes heat transfer to drop. The rise of the Thermophoresis and Brownian motion parameters ameliorate mass transfer and declines heat transfer significantly. The augmentation of buoyancy ratio number enhances heat and mass transfer. The augmentation of the power-law index declines various entropy generations in different Rayleigh numbers and Hartmann numbers. The increase in Hartmann number declines total entropy generation in different Rayleigh numbers. In addition, the rise of Rayleigh number and Hartmann number causes Bejan number to drop in various power-law indexes. The enhancement of the Lewis number provokes the total irreversibility to rise. Further, the total entropy generation increases as the buoyancy ratio number augments. It was shown that the increase in the Brownian motion and Thermophoresis parameters enhance the total irreversibility.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInternational journal of hydrogen energy, 6 July 2017, v. 42, no. 27, p. 17284-17327en_US
dcterms.isPartOfInternational journal of hydrogen energyen_US
dcterms.issued2017-07-06-
dc.identifier.scopus2-s2.0-85020456378-
dc.identifier.eissn1879-3487en_US
dc.description.validate202405 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0794-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6752460-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Tang_Simulation_Natural_Convection.pdfPre-Published version908.91 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

9
Citations as of Jun 30, 2024

Downloads

1
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

62
Citations as of Jul 4, 2024

WEB OF SCIENCETM
Citations

55
Citations as of Jul 4, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.