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Abstract

In this paper, natural convection and entropy generation of non-Newtonian nanofluid,
using the Buongiorno’s mathematical model in a cavity in the presence of a uni-
form magnetic field has been analyzed by Finite Difference Lattice Boltzmann
method (FDLBM). The cavity is filled with nanofluid which the mixture shows
shear-thinning behavior. This study has been performed for the certain pertinent
parameters of Rayleigh number (Ra = 104 and 105), Hartmann number (Ha =0,
15, 30), buoyancy ratio number (Nr = 0.1, 1, and 4), power-law index (n = 0.4 -
1), Lewis number (Le = 1, 5, and 10), Thermophoresis parameter (Nt = 0.1, 0.5,
1), and Brownian motion parameter (Nb = 0.1, 1, 5). The Prandtl number is fixed
at Pr=1. The Results indicate that the augmentation of Hartmann number causes
heat and mass transfer to drop. The increase in Rayleigh number enhances heat
and mass transfer for various power-law indexes. The alteration of the power-law
index changes heat and mass transfer. In addition, the rise of Hartmann number
declines the shear-thinning behavior. The increase in the Lewis number augments
mass transfer while it causes heat transfer to drop. The rise of the Thermophoresis
and Brownian motion parameters ameliorate mass transfer and declines heat trans-
fer significantly. The augmentation of buoyancy ratio number enhances heat and
mass transfer. The augmentation of the power-law index declines various entropy
generations in different Rayleigh numbers and Hartmann numbers. The increase in
Hartmann number declines total entropy generation in different Rayleigh numbers.
In addition, the rise of Rayleigh number and Hartmann number causes Bejan num-
ber to drop in various power-law indexes. The enhancement of the Lewis number
provokes the total irreversibility to rise. Further, the total entropy generation in-
creases as the buoyancy ratio number augments. It was shown that the increase
in the Brownian motion and Thermophoresis parameters enhance the total irre-
versibility.
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1 Introduction

1.1 Fuel cells (effects of nanofluid and a magnetic field)

The high request for new energy sources instead of fossil fuels has attracted
many industries to fuel cell (FC) technology [1]. A Hydrogen Fuel Cell (FC) is
an electro-chemical device that converts the chemical energy of hydrogen or a
hydrogen rich fuel into electricity through a chemical reaction with oxygen or
another oxidizing agent. Among different fuel cells, Hydrogen fuel cells, espe-
cially proton exchange membrane fuel cells (PEMFCs), have been proven to be
promising energy conversion systems for automotive applications because of
high power density, rapid start up, low operating temperature, high electrical
energy conversion efficiency, compact size, low weight, long useful life, and the
capacity to work under stop-start driving conditions [2]. The thermal man-
agement of a PEMFC is one of the most important parts. In large PEMFCs
(10kW fuel cells and larger), liquid cooling, e.g. water, waterethylene-glycolor,
engine oil is usually essential and in this kind of models, convection process
plays the key role in heat transfer and cooling of the system [3-5]. Nanofluids
have been utilized widely for improving the cooling of PEMFCs [6]. Fluids with
nanoparticles suspended in them are called nanofluids where have anomalous
high thermal conductivity at very low nanoparticles concentration. In addi-
tion, it was observed that the magnetic gradient force accelerates the transport
process of oxygen molecules. In fact, a magnetic field influences the diffusion
process of the oxygen molecules rather than the catalysis [7]. Therefore, to
study the effects of these parameters (Nanofluid and a fixed magnetic field)
on convection process, a benchmark study (Natural convection in a cavity) is
selected in the presence of the parameters in this paper.
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1.2 Natural convection in a cavity

Flow in an enclosure driven by buoyancy force is a fundamental problem in
fluid mechanics and heat transfer. This type of flow is encountered in a vari-
ety of thermal engineering applications including cooling of electronic devices
and MEMS applications, furnaces, lubrication technologies, high-performance
building insulation, multi-shield structures used for nuclear reactors, food pro-
cessing, glass production, solar power collectors, drying technologies, fuel cells,
chemical processing equipment and others. Therefore, numerous investigations
have been conducted in the past on natural convection in a cavity. For instance,
de Vahl Davis [8] adopted the stream function-vorticity formulation and ob-
tained some benchmark solutions using a second-order finite difference scheme
as well as the Richardson extrapolation. The results in the Rayleigh number
range Ra = 103 − 106 were presented. Subsequently, Le Quéré and Alziary
de Roquefort [9], and Le Quéré [10] produced their solutions to the same
problem but with a totally different method, i.e., the semi-implicit Chebyshev
spectral method on the primitive variables system. Chenoweth and Paolucci
[11,12] employed an explicit predictor-corrector finite difference method on
the staggered grid to examine the gas motion in a cavity, including the ef-
fect of the aspect ratio A (1 ≤ A ≤ 102). Barakos et al [13] studied both
laminar and turbulent flows in the cavity using a finite volume approach for
Ra = 103 − 1010. Zienkiewicz et al [14] developed a characteristic-based split
algorithm combined with the finite element method and applied it to the
square cavity flow. The non-uniform structured mesh was used in their com-
putation. Gjesdal et al [15] performed spectral element simulations on both
square and rectangular cavities. For square cavity problem, some results under
Ra = 104− 108 were listed. El-Amrani and Seäıd [16] used a semi-Lagrangian
Galerkin-characteristic method on the natural convection problem in a square
cavity and compared results with those from Eulerian-based Galerkin finite
element solvers. They provided results in the range Ra = 103 − 108.

1.3 Natural convection of nanofluid in enclosures

To observe the effect of nanofluid on natural convection process in different
industries [17-22] including fuel cells, over the last decade, the analysis of
natural convection in enclosures filled with nanofluids has been studied exten-
sively using different geometries, equation models, and numerical techniques
and can be used in numerous applications of engineering. Kefayati et al. [23]
studied effect of SiO2/water nanofluid for heat transfer improvement in tall
enclosures by Lattice Boltzmann Method. They showed that the average Nus-
selt number increases with volume fraction for the whole range of Rayleigh
numbers and aspect ratios. In addition, the effect of nanoparticles on heat
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transfer augments as the enclosure aspect ratio increases. Kefayati et al. [24]
scrutinized Lattice Boltzmann simulation of natural convection in an open
enclosure which subjugated to water/copper nanofluid. They mentioned the
most effect of nanoparticles on heat transfer enhancement is observed at the
aspect ratio of A=2. Moreover, nanoparticles influence the heat transfer less
at Ra=105 among studied Rayleigh numbers. Sajjadi et al. [25] analyzed tur-
bulent natural convection with large-eddy simulation (LES) in a square cav-
ity, which is filled with water/copper nanofluid. It was reported the average
Nusselt number enhances with the augmentation of the nanoparticles volume
fractions. Bouhalleb and Abbassi [26] studied steady two-dimensional natu-
ral convection flow of CuO-water nanofluid in an enclosure heated from one
side and cooled from the ceiling. The effects of Rayleigh number and aspect
ratio on flow pattern and energy transport were investigated. It was found
that the effect of Rayleigh number on heat transfer is less significant when
the enclosure is shallow and the influence of aspect ratio is stronger when the
enclosure is tall and the Rayleigh number is high. Boualit et al. [27] carried out
numerical simulations in order to analyze the effect of nanoparticles addition
on the laminar natural convection in a square enclosure. The hydrodynamic
structure of the flow and its thermal behavior are studied for a wide range
of Rayleigh numbers and nanoparticle concentrations. The results showed an
enhancement of the mean Nusselt number with an increase of nanoparticle
volume fraction for all examined Rayleigh numbers.

1.4 Natural convection of MHD nanofluid in a cavity

On the other hand, in some engineering problems such as the magnetic field
sensors, the magnetic storage media and the cooling systems of electronic
devices, enhanced heat transfer is desirable, but the magnetic field weakens
the convection process. An acceptable method in new industries which can
increase heat transfer considerably is addition of nanoparticles to the base
fluid. The problem, the utilization of nanoparticles in the presence of a mag-
netic field, on natural convection in different shapes and boundary conditions
has been simulated by several researchers utilizing various numerical methods
recently [28-36]. In the investigations, nanofluid is simulated, employing the
single phase model without studying the thermophoresis and Brownian mo-
tion parameters. However; recently, the two-phase model is applied to study
natural convection of nanofluid in the abscence of the magnetic field by some
researchers where the nanoparticle concentration is not uniform. In fact, Brow-
nian motion and thermophoresis parameters have been considered [37-38]. For
the all of the mentioned numerical investigations, the base fluid was assumed
to be Newtonian, but it has been demonstrated by many researchers that the
vast majority of nanofluids exhibit non-Newtonian, mainly shear-thinning,
behavior [39-41]. Therefore, it is necessary that the effect of shear-thinning
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behavior of nanofluids to be considered.

1.5 Entropy generation

The optimal design of the cited industries is obtained with precision calcu-
lation of entropy generation since it clarifies energy losses in a system evi-
dently. Entropy generation on natural convection in the presence and absence
of mass transfer for different fluid flows has been scrutinized widely. Ilis et
al. [42] investigated entropy generation in rectangular cavities with different
aspect ratios numerically. It was demonstrated that heat transfer and fluid
friction irreversibility in a cavity vary considerably with the studied aspect
ratios. In addition, the total entropy generation in a cavity increases with
Rayleigh number, however, the rate of increase depends on the aspect ratio.
El-Maghlany et al. [43] analyzed entropy generation associated with laminar
natural convection in an infinite square cavity, subjected to an isotropic heat
field with various intensities for different Rayleigh numbers. Mahmoudi et al.
[44] studied the entropy generation and enhancement of heat transfer in nat-
ural convection flow and heat transfer using Copper (Cu)water nanofluid in
the presence of a constant magnetic field in a two dimensional trapezoidal
enclosure. The results show that at Ra = 104 and 105, the enhancement of the
Nusselt number due to presence of nanoparticles increases with the Hartman
number, but at higher Rayleigh number, a reduction was observed. In addition,
it was mentioned that the entropy generation decreases when the nanoparti-
cles are present, while the magnetic field generally augments the magnitude
of the entropy generation. Mejri et al. [45] examined the laminar natural con-
vection and entropy generation in a square enclosure filled with a waterAl2O3
nanofluid subjected to a magnetic field. The results demonstrated that for Ha
= 20 the heat transfer rate and entropy generation respectively increase and
decrease with the increases of volume fraction. In addition, it was mentioned
that the proper choice of Rayleigh and Hartmann numbers could be able to
maximize heat transfer rate simultaneously minimizing entropy generation.
Sheikholeslami and Ganji [46] investigated magnetohydrodynamic free con-
vection flow of CuO/water nanofluid in a square enclosure with a rectangular
heated body numerically using Lattice Boltzmann Method (LBM) scheme.
The results showed that the heat transfer rate and dimensionless entropy gen-
eration number increase with augmentation of the Rayleigh number and the
nanoparticle volume fraction, but it decreases with increase in the Hartmann
number.
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1.6 Methodology and objective

Lattice Boltzmann method (LBM) has been demonstrated to be a very effec-
tive mesoscopic numerical method to model a broad variety of complex fluid
flow phenomena. This is because the main equation of the LBM is hyperbolic
and can be solved locally, explicitly, and efficiently on parallel computers.
However, the specific relation between the relaxation time and the viscosity
has caused LBM not to have the considerable success in non-Newtonian fluid
especially on energy equations. In this connection, Fu et al. [47-48] proposed
a new equation for the equilibrium distribution function, modifying the LB
model. Here, this equilibrium distribution function is altered in different di-
rections and nodes while the relaxation time is fixed. Independency of the
method to the relaxation time in contrast with common LBM provokes the
method to solve different non-Newtonian fluid energy equations successfully as
the method protects the positive points of LBM simultaneously. In addition,
the validation of the method and its mesh independency demonstrates that
is more capable than conventional LBM. Huilgol and Kefayati [49] derived
the three dimensional equations of continuum mechanics for this method and
demonstrated that the theoretical development can be applied to all fluids,
whether they be Newtonian, or power law fluids, or viscoelastic and viscoplas-
tic fluids. Kefayati [50] studied natural convection of non-Newtonian nanofluid
in a cavity. Results indicated that the augmentation of the power-law index
causes heat transfer to drop while increase in volume fraction of nanoparticles
augments it. It was mentioned that entropy generation due to fluid friction
and heat transfer rises as Rayleigh number enhances. Augmentation of volume
fraction enhances entropy generations due to heat transfer and fluid friction in
different power-law indexes. The total entropy generation declines slightly as
power-law index increases. Kefayati [51] simulated heat transfer and entropy
generation on laminar natural convection of non-Newtonian nanofluids in the
presence of an external horizontal magnetic field in a square cavity. Results
indicated that the augmentation of the power-law index causes heat transfer
to drop in the absence of the magnetic field, by contrast, the heat transfer in-
creases with the rise of power-law index in the presence of the magnetic field.
The addition of nanoparticle augments heat transfer for multifarious studied
parameters. The heat transfer dropped with the increase in Hartmann number
generally and also affects the power-law index and nanoparticles influences on
heat transfer. Augmentation of the volume fraction and Rayleigh number en-
hance all kinds of entropy generations of heat transfer, fluid friction, and the
magnetic field in different studied parameters. The increase in the Hartmann
number caused the total entropy generation to drop and affected the influences
of the power-law index and the volume fraction on the entropy generations.

The main aim of this study is to simulate natural convection of nanofluid in
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a cavity in the presence of a magnetic field as the two-phase model and shear
thinning behavior have been considered simultaneously. The innovation of this
paper is studying MHD non-Newtonian fluid, considering Brownian motion
and thermophoresis parameters for the first time. An innovative method based
on LBM has been employed to study the problem numerically. Moreover,
it is endeavored to express the effects of different parameters on the flow,
thermal and solutal fields. The obtained results are validated with previous
numerical investigations and the effects of the main parameters (Rayleigh
number, power-law index, Hartmann number, Lewis number, buoyancy ratio
number, Thermophoresis parameter, and Brownian motion) on the fluid flow,
heat and mass transfer, as well as entropy generations are researched.

2 Theoretical formulation

The geometry of the present problem is shown in Fig. 1. The temperature
and concentration of the left wall have been considered to be maintained at
high temperature and concentration of TH and CH as the right sidewall is
kept at low temperature and concentration of TC and CC . The horizontal
walls are adiabatic and impermeable. The cavity is filled with a nanofluid
which shows shear-thinning behavior. A horizontal magnetic field has been
applied on the flow. The Prandtl number is fixed at Pr=1. The Thermophore-
sis, and Brownian motion parameters also have been considered. There is no
heat generation, chemical reactions, and thermal radiation. The flow is incom-
pressible, and laminar. The density variation is approximated by the standard
Boussinesq model for both temperature and concentration. The viscous dis-
sipation and Joule heating in the energy equation are neglected. In addition,
the induced magnetic field is assumed to be negligible in comparison with the
external magnetic field. Moreover, the imposed and induced electrical fields
are assumed to be negligible.

2.1 Dimensional equations

Based on the above assumptions, and applying the Boussinesq approximation,
the studied equations are [50-51]:

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0, (2.1)

ρf

(
∂ū

∂t̄
+ ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ

)
= −∂p̄

∂x̄
+

(
∂τ̄xx
∂x̄

+
∂τ̄xy
∂ȳ

)
(2.2)
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ρf

(
∂v̄

∂t̄
+ ū

∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ

)
= −∂p̄

∂ȳ
+

(
∂τ̄yy
∂ȳ

+
∂τ̄xy
∂x̄

)
+ gy

[
(ρs − ρf )(C̄ − CC)− β(1− CC)ρf (T̄ − TC)

]
− σB2v̄, (2.3)

In the above equations (u = ūi + v̄j), T̄ , and C̄, and gy are the dimensional
velocities, temperature, concentration, and gravity acceleration respectively.
β is the coefficient of thermal expansion as ρf and ρs are density of fluid and
solid, respectively. σ is electrical conductivity and B is the magnetic field.
Now, let the pressure p be written as the sum p̄ = p̄s + p̄d, where the static
part p̄s accounts for gravity alone, and p̄d is the dynamic part. Thus,

−∂p̄s
∂y

= ρgy · (2.4)

∂T̄

∂t̄
+ ū

∂T̄

∂x̄
+ v̄

∂T̄

∂ȳ
= α

(
∂2T̄

∂x̄2
+
∂2T̄

∂ȳ2

)

+ δ

DB

(
∂C̄

∂x̄

∂T̄

∂x̄
+
∂C̄

∂ȳ

∂T̄

∂ȳ

)
+
(
DT

TC

)(∂T̄
∂x̄

)2

+

(
∂T̄

∂ȳ

)2
 (2.5)

DB = kBT0
3πdpµf

andDT =
βµfC0

ρf
are the Brownian motion and the thermophoresis

coefficients, respectively and α is the effective thermal conductivity. δ is a

parameter defined by δ =
(ρCp)s
(ρCp)f

∂C̄

∂t̄
+ ū

∂C̄

∂x̄
+ v̄

∂C̄

∂ȳ
= DB

(
∂2C̄

∂x̄2
+
∂2C̄

∂ȳ2

)
+
DT

TC

(
∂2T̄

∂x̄2
+
∂2T̄

∂ȳ2

)
(2.6)

The flow domain is given by Ω = (0, L) × (0, L), and the boundary Γ = ∂Ω.
It is the union of four disjoint subsets:

Γ1 = {(x, y), x = 0, 0 ≤ y ≤ L} , Γ2 = {(x, y), x = L, 0 ≤ y ≤ L} , (2.7)

Γ3 = {(x, y), 0 ≤ x ≤ L, y = 0} , Γ4 = {(x, y), 0 ≤ x ≤ L, y = L} . (2.8)

The boundary condition for the velocity is straightforward:

u|Γ1
= u|Γ2

= u|Γ3
= u|Γ4

= 0. (2.9)

The boundary conditions for the temperature and concentration are:

T |Γ1
= TH , T |Γ2

= TC , ∂T/∂y|Γ3
= 0, ∂T/∂y|Γ4

= 0. (2.10)
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C|Γ1
= CH , C|Γ2

= CC , ∂C/∂y|Γ3
= 0, ∂C/∂y|Γ4

= 0. (2.11)

In the case of the non-Newtonian power-law fluid for an incompressible flow,
the general stress is given by [50-51]

τ̄ = η̄(II(A1))A1, (2.12)

where II(A1) is the second invariant of the first Rivlin-Ericksen tensor A1

and they are calculated as [50-51]

A1(u) = ∇u + ∇uT (2.13)

II(A1) =

2

(∂ū
∂x̄

)2

+

(
∂v̄

∂ȳ

)2
+

(
∂v̄

∂x̄
+
∂ū

∂ȳ

)2


1
2

· (2.14)

As a result, the dimensional apparent viscosity in the power-law model is as
follows:

η̄(II(A1)) =

2

(∂ū
∂x̄

)2

+

(
∂v̄

∂ȳ

)2
+

(
∂v̄

∂x̄
+
∂ū

∂ȳ

)2


n−1
2

· (2.15)

2.2 Non-dimensional equations

In order to proceed to the numerical solution of the system, the following non
dimensional variables are introduced.

t =
t̄(

L2

α

)
Ra−0.5

, x̄ = x/L, ȳ = y/L, u =
ū(

α
L

)
Ra0.5

(2.16)

v =
v̄(

α
L

)
Ra0.5

, Pd =
P̄d

ρ
(
α
L

)2
Ra

, T̄ = (T − TC)/(TH − TC) (2.17)

C̄ = (C − CC)/(CH − CC) (2.18)
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By substitution of Eqs. (2.16) - (2.18) into Eqs. (2.1) - (2.6), the following
system of non-dimensional equations is derived:

∂u

∂x
+
∂v

∂y
= 0, (2.19)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂pd

∂x
+

Pr√
Ra

(
∂τxx
∂x

+
∂τxy
∂y

)
, (2.20)

∂v

∂t
+u

∂v

∂x
+v

∂v

∂y
= −∂pd

∂y
+

Pr√
Ra

(
∂τxy
∂x

+
∂τyy
∂y

)
+Pr (T −Nr C)− Pr Ha

2

√
Ra

v,

(2.21)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1√
Ra

(∂2T

∂x2
+
∂2T

∂y2

)
+Nb

[(
∂T

∂x

)(
∂C

∂x

)
+

(
∂T

∂y

)(
∂C

∂y

)]
+Nt

(∂T
∂x

)2

+

(
∂T

∂y

)2


(2.22)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
=

1

Le
√
Ra

[(
∂2C

∂x2
+
∂2C

∂y2

)
+
Nt

Nb

(
∂2T

∂x2
+
∂2T

∂y2

)]
(2.23)

In the case of the non-Newtonian power-law fluid, the non-dimensional appar-
ent viscosity and stresses are given by

η(II(A1)) =

2

(∂u
∂x

)2

+

(
∂v

∂y

)2
+

(
∂v

∂x
+
∂u

∂y

)2


n−1
2

· (2.24)

τxx = 2η(II(A1))

(
∂u

∂x

)

τyy = 2η(II(A1))

(
∂v

∂y

)

τxy = η(II(A1))

(
∂u

∂y
+
∂v

∂x

)
.

(2.25)

The non-dimensional parameters for the problem are as follows [50-51]:
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Rayleigh number:

Ra =
(1− CC)ρf β gL

3∆T

η̄ α
, (2.26)

Prandtl number:

Pr =
η̄

ρf α
, (2.27)

Hartmann number:

Ha = LB

√
σ

η̄
, (2.28)

Buoyancy ratio number:

Nr =
(ρs − ρf ) ∆C

β∆Tρf (1− CC)
, (2.29)

Lewis number:

Le =
α

DB

, (2.30)

Brownian motion parameter:

Nb =
δ DB ∆C

α
, (2.31)

Thermophoresis parameter:

Nt =
δ DT ∆T

αTC
. (2.32)

3 Entropy generation

3.1 Dimensional equations

In the studied problem, the irreversibility is generated through heat transfer,
fluid friction and mass transfer. As a result, the total entropy is the sum of the
irreversibilities due to thermal gradients, viscous dissipation and concentration
gradients as follows [52-55]:

S̄S = S̄F + S̄T + S̄D + S̄G . (3.1)
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Where the entropy generations due to fluid friction (S̄F ), heat transfer (S̄T ),
magnetic field (S̄G), and mass transfer (S̄D) is calculated as follows:

S̄F =
η̄

T0

2

(
∂ū

∂x̄

)2

+ 2

(
∂v̄

∂ȳ

)2

+

(
∂ū

∂ȳ
+
∂v̄

∂x̄

)2
 . (3.2)

S̄T =
k

T 2
0

(∂T̄
∂x̄

)2

+

(
∂T̄

∂ȳ

)2
 . (3.3)

S̄G = −σB
2

T0

v̄2, (3.4)

S̄D =
RDB

C0

(∂C̄
∂x̄

)2

+

(
∂C̄

∂ȳ

)2
+

RDB

T0

[(
∂C̄

∂x̄

) (
∂T̄

∂x̄

)
+

(
∂C̄

∂ȳ

) (
∂T̄

∂ȳ

)]
,

(3.5)
k is the thermal coductivity and R is the Gas constant. T0 and C0 are bulk
temperature and bulk concentration respectively and could be calculated as

T0 =
TH + TC

2
, C0 =

CH + CC
2

, (3.6)

An important measure of the entropy field is Bejan number (Be) which is
defined as the ratio between entropy generations due to heat and mass transfer
irreversibilities to the total entropy generation as follow

Be =
S̄T + S̄D
S̄S

. (3.7)

3.2 Non-dimensional equations

The local dimensionless entropy generations with consideration to non-dimensional
variables of Eqs. (2.16) - (2.18) can be acquired as follows:

SS = SF + ST + SD + SG (3.8)

SF = ΦI

2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+

(
∂u

∂y
+
∂v

∂x

)2
 , (3.9)

ST =

(∂T
∂x

)2

+

(
∂T

∂y

)2
 , (3.10)

SD = ΦII

(∂C
∂x

)2

+

(
∂C

∂y

)2
+ ΦIII

[(
∂C

∂x

) (
∂T

∂x

)
+

(
∂C

∂y

) (
∂T

∂y

)]
,

(3.11)
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SG = ΦIHa
2v2, (3.12)

ΦI =
η T0

k

(
α

L∆T

)2

Ra =

{
2
[(

∂u
∂x

)2
+
(
∂v
∂y

)2
]

+
(
∂v
∂x

+ ∂u
∂y

)2
} (n−1)

2

T0

k

(
α

L∆T

)2

Ra ,

(3.13)

λ =
T0

k

(
α

L∆T

)2

(3.14)

ΦII =
RDBT0

kC0

(
∆C

∆T

)2

(3.15)

ΦIII =
RDB

k

(
∆C

∆T

)
(3.16)

It should be mentioned that the variables of ΦII , ΦIII , λ is taken constant [52-
55] and they are ΦII= 0.5,ΦIII= 0.01, λ = 0.01. The local non-dimensional
Bejan number is calculated as follows:

Be =
ST + SD
SS

, (3.17)

The total dimensionless entropy generations are obtained by numerical inte-
gration of the local dimensionless entropy generation over the entire cavity
volume. It is given by:

SF, tot =

1∫
0

1∫
0

SFdxdy , ST, tot =

1∫
0

1∫
0

STdxdy, SD, tot =

1∫
0

1∫
0

SDdxdy,

(3.18)

SG, tot =

1∫
0

1∫
0

SGdxdy , SS, tot =

1∫
0

1∫
0

SSdxdy , (3.19)

Similarity, average Bejan number can be obtained as follow

Beavg =

1∫
0

1∫
0

Be dxdy . (3.20)

4 The numerical method

The FDLBM equations and their relationships with continuum equations have
been explained in details in Huilgol and Kefayati [49]. Here, just a brief de-
scription about the main equations would be cited. In addition, the applied al-
gorithm has been described and the studied problem equations in the FDLBM
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are mentioned.

4.1 The Continuity and Momentum equations

To have the continuity and momentum equations, a discrete particle distri-
bution function fα is defined over a D2Q9 lattice where it should satisfy an
evolution equation:

∂fα
∂t

+ ξξξα · ∇xfα − Fα = − 1

ε φ
(fα − f eqα ), (4.1)

where ε is a small parameter to be prescribed when numerical simulations are
considered.

Associated to each node is a lattice velocity vector ξξξα. It is defined as follows:

ξξξα =


(0, 0), α = 0,

σ(cos θα, sin θα) α = 1, 3, 5, 7,

σ
√

2(cos θα, sin θα), α = 2, 4, 6, 8.

(4.2)

Here, the angles θα are defined through θα = (α − 1)π/4, α = 1, · · · , 8.
The constant σ has to be chosen with care for it affects numerical stability;
its choice depends on the problem. The method for finding the parameter σ
which satisfies the Courant-Friedrichs-Lewy (CFL) condition is described in
[49].

The equilibrium distribution function, f eqα , is different from the conventional
ones adopted by previous researchers, who normally expand the Maxwellian
distribution function. In the present approach, we expand f eqα as a quadratic
in terms of ξξξα, using the notation of linear algebra:

f eqα = Aα + ξξξα ·Bα + (ξξξα ⊗ ξξξα) : Cα, α = 0, 1, 2, · · · , 8. (4.3)

Here, the scalars Aα are defined through

A0 = ρ− 2p

σ2
− ρ|u|2

σ2
+
τxx + τyy

σ2
, Aα = 0, α = 1, 2, · · · , 8. (4.4)

The vectors Bα are given by

B1 =
ρu

2σ2
= Bα, α = 1, 3, 5, 7; Bα = 0, α = 0, 2, 4, 6, 8. (4.5)
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Next, the matrices Cα are such that C0 = 0; C1 = Cα, α = 1, 3, 5, 7; C2 =
Cα, α = 2, 4, 6, 8, where

C1 =

C11 0

0 C22

 , C11 =
1

2σ4
(p+ρu2−τxx), C22 =

1

2σ4
(p+ρv2−τyy), (4.6)

C2 =

 0 C12

C21 0

 , C12 = C21 =
1

8σ4
(ρuv − τxy). (4.7)

In order to derive the macroscopic equations for an incompressible continuous
medium in the presence of a body force, it has been shown that [49-51] the
functions Fα in (4.1) must be such that

8∑
α=0

Fα = 0. (4.8)

In turn, this guarantees that the conservation of mass equation is satisfied.
Next, one requires that

8∑
α=0

Fαξξξα = ρb, (4.9)

where ρb is the body force. Thus, one choice for the set of Fα is:

F0 = 0, F1 =
1

2σ2
ρb · ξξξ1, F3 =

1

2σ2
ρb · ξξξ3, (4.10a)

F5 =
1

2σ2
ρb · ξξξ5, F7 =

1

2σ2
ρb · ξξξ7. (4.10b)

Fα = 0, α = 2, 4, 6, 8. (4.10c)

One notes that F1 = −F5, F3 = −F7.

In this problem, the non-dimensional body force is as follows:

ρb =
Pr (T −NrC)− Pr Ha2√

Ra
v

2σ2
j (4.11)
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4.2 The Energy Equation

In order to obtain the energy equation, an internal energy distribution function
gα is introduced and it is assumed to satisfy an evolution equation similar to
that for fα. Thus,

∂gα
∂t

+ ξξξα · ∇xgα −Gα = − 1

εφ
(gα − geqα ). (4.12)

Here, geqα has a monomial expansion:

geqα = Dα + ξξξα · Eα, (4.13)

One way of satisfying the above is to assume, as before, that the scalars are
given by Dα = D1, α = 1, 3, 5, 7, and Dα = D2, α = 2, 4, 6, 8,. In this problem,
the non-dimensional parameters are obtained as follows:

D0 = T, D1 = 0, D2 = 0. (4.14)

Regarding the vectors, it is assumed that E0 = 0, Eα = E1, α = 1, 3, 5, 7; Eα =
E2, α = 2, 4, 6, 8, where

E1 =

(
uT − 1√

Ra

(
∂T
∂x

+ Nb

(
T ∂C
∂x

)
+Nt

(
T ∂T
∂x

)))
2σ2

. (4.15)

Finally, Gα = 0.

4.3 The Concentration Equation

In order to obtain the concentration equation, an internal concentration dis-
tribution function hα is introduced and it is assumed to satisfy an evolution
equation similar to that for fα. Thus,

∂hα
∂t

+ ξξξα · ∇xhα −Hα = − 1

εφ
(hα − heqα ). (4.16)

Here, heqα has a monomial expansion:

heqα = Mα + ξξξα ·Nα, (4.17)

One way of satisfying the above is to assume, as before, that the scalars are
given by Mα = M1, α = 1, 3, 5, 7, and Mα = M2, α = 2, 4, 6, 8,. In this
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problem, the non-dimensional parameters are obtained as follows:

M0 = C, M1 = 0, M2 = 0. (4.18)

Regarding the vectors, it is assumed that N0 = 0, Nα = N1, α = 1, 3, 5, 7; Nα =
N2, α = 2, 4, 6, 8, where(

uC − 1
Le
√
Ra

(
∂C
∂x

+ Nt

Nb

∂T
∂x

))
2σ2

(4.19)

Finally, Hα = 0.

The local and the average Nusselt numbers at the hot wall with the utilization
of the dimensionless parameters are calculated as

Nu =

(
−∂T
∂x

)
x=0

(4.20)

Nuavg =

1∫
0

Nudy (4.21)

The local and the average Sherwood numbers with the utilization of the di-
mensionless parameters at the hot wall are calculated as

Sh =

(
−∂C
∂x

)
x=0

(4.22)

Shavg =

1∫
0

Sh dy (4.23)

Because of considering power-law index effects on different parameters exactly,
normalized average Nusselt and Sherwood numbers on the hot wall are defined.
The normalized average Nusselt and Sherwood numbers express Nusselt and
Sherwood numbers at any power-law indexes to the Newtonian fluid ones
which are written as follows:

Nu∗avg(n) =
Nuavg(n)

Nuavg(n = 1)
(4.24)

Sh∗avg(n) =
Shavg(n)

Shavg(n = 1)
(4.25)
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5 Code validation and grid independence

Finite Difference Lattice Boltzmann Method (FDLBM) scheme is utilized to
simulate entropy generation of laminar natural convection in a cavity that is
filled with non-Newtonian nanofluid. The Buongiorno’s mathematical model
has been employed in this simulation where the Thermophoresis and Brownian
motion parameters have been studied. The Prandtl number is fixed at Pr=1.
This problem is investigated at different Rayleigh numbers of (Ra=104 and
105), power-law index (n=0.4-1), buoyancy ratio number (Nr = 0.1, 1, and
4), Hartmann numbers (Ha = 0, 15, 30), Lewis number (Le = 1, 5, and 10),
Thermophoresis parameter (Nt = 0.1, 0.5, 1), and Brownian motion parameter
(Nb=0.1, 1, 5). An extensive mesh testing procedure was conducted to guar-
antee a grid independent solution. Seven different mesh combinations were
explored for the case of Ra = 105, Ha = 15, n=1, Le = 1 and Nr = Nt = Nb =
0.1. It was confirmed that the grid size (150*150) ensured a grid independent
solution as portrayed in Table 1. To check the accuracy of the present results,
the present code for Newtonian fluid is validated with published studies on the
natural convection in a cavity. The results are compared in Table 2 as it shows
an agreement between present and previous studies. To validate the precision
of the present consequences for calculation of entropy, the obtained results
are validated with the study of Ilis et al. [42] in Fig.2. FDLBM is applied for
non-Newtonian natural convection and entropy generation of non-Newtonian
nanofluid and MHD non-Newtonian nanofluid in the absence of mass transfer
by the author recently [50-51] which demonstrates the accuracy of the utilized
code for non-Newtonian nanofluid properly.

6 Results and discussion

6.1 Effects of Rayleigh number, power-law index and Hartmann number on
fluid flow, heat and mass transfer

Fig.3 presents the isotherms, streamlines and the isoconcentrations for differ-
ent power-law indexes and Hartmann numbers at Ra = 105, Nr = Nt = Nb

= 0.1, and Le=1. The isotherm of T=0.8 can indicate the effect of power-law
index on the isotherms properly at Ha=0 as the distance of the isotherm of
T=0.8 from the hot wall drops with the increment of power-law index and
therefore the convection process becomes weak. In addition, the streamline
of ψ=-0.035 diminishes gradually as power-law index enhances and demon-
strates that the convection process falls at Ha=0 with the enhancement of
power-law index. The isoconcentration of C=0.9 at Ha=0, shows the influ-
ence of power-law index clearly where it transfers shorter distance between
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the cold and hot walls and therefore demonstrates the convection of the mass
transfer decreases with the augmentation of the power-law index noticeably.
It is evident that the increase in Hartmann number causes the gradients of
isotherms and isoconcentrations on the hot wall to drop considerably. The
rise of the Hartmann number provokes the movement of the isotherms and
isoconcentrations between the hot and cold walls to alter. The trend demon-
strates that the convection process is becoming weak with the enhancement
of Hartmann number. Moreover, it shows that the enhancement of power-law
index in various Hartmann number declines the gradients of the isotherms
and isoconcentrations. The fixed streamlines values of ψ= -0.035, -0.0278 and
-0.0195 demonstrate that the rise of power-law index declines the convection
process for Hartmann numbers of Ha=0, 15, and 30, respectively.

Fig.4 illustrates influence of power-law index and Rayleigh numbers on the
distribution of velocity in the middle of the cavity while local Nusselt and
Sherwood numbers on the hot wall are studied at Nr = Nt = Nb = 0.1, Le=1,
and Ha=0. It shows that the profile of the velocity, the local Nusselt and
Sherwood numbers enhance generally as the Rayleigh number augments. It
depicts that the local Nusselt number drops by the rise of the power-law index
considerably. But, the local Nusselt number declines considerably from n=0.4
to 0.6 compared to other power-law indexes. Moreover, the effect of power-law
index on the local Nusselt number is not uniform on the hot wall. In another
words, the effect of the power-law index on the local Nusselt number drops
along the hot wall with the rise of the Y where the local Nusselt number
for different power-law indexes are nearly the same at Y > 0.8. The local
Sherwood number shows similar behavior of the local Nusselt number as it
decreases with the enhancement of the power-law index. In addition, the effect
of the power-law index on the local Sherwood number drops along the hot
wall where in the second half of the hot wall the local Sherwood numbers
are nearly the same for various power-law indexes. The vertical velocity in
different power-law indexes displays that the maximum vertical velocity drops
and the curvy shape of the distribution declines due to the increase in power-
law index. However, the effect of power-law index on the vertical velocity from
n=0.4 to 0.6 is more considerable than other power-law indexes.

Fig.5 depicts the distribution of velocity in the middle of the cavity and the
local Nusselt and Sherwood numbers on the hot wall are studied in different
Hartmann numbers and Rayleigh numbers. It is apparent the augmentation
of the Hartmann number causes the local Nusselt and Sherwood numbers to
drop significantly as the decline is more sever from Ha=15 to 30. However,
it depicts that the effect of the Hartmann number on the local Nusselt and
Sherwood numbers decrease steadily from the bottom section of the hot wall to
the upper part. The cited trend is clear at 0.8 < Y < 1 where the Nusselt and
Sherwood numbers are nearly the same for different Hartmann numbers. The
amplitudes of vertical velocities distributions, which are located close to the
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sidewalls, diminish with the increase of Hartmann number. The phenomenon
demonstrates that the convection process is weakened by the enhancement of
the Hartmann number.

Fig.6 shows the average Nusselt and Sherwood numbers as well as the nor-
malized average Nusselt and Sherwood numbers on the hot wall in different
Rayleigh numbers, Hartmann numbers and power-law indexes. The average
Nusselt and Sherwood numbers show that heat and mass transfer enhance
with the rise of Rayleigh number generally. Furthermore, it demonstrates that
heat and mass transfer decrease markedly as Hartmann number increases in
various Rayleigh numbers and power-law indexes. At Ha=0, the increase in
power-law index provokes heat and mass transfer to drop in different Rayleigh
numbers. At Ha=15, the average Nusselt and Sherwood numbers decrease
due to the augmentation of power-law index at Ra=105. The normalized aver-
age Nusselt and Sherwood numbers at Ha=15 demonstrate that the effect of
power-law index on heat and mass transfer drops and augments, respectively,
compared to Ha=0. At Ha=30, it is clear that the effect of powe-law index
on the average Nusselt and Sherwood numbers drop considerably, compared
to Ha=0 and 15. In addition, the enhancement of power-law index causes the
average Nusselt and Sherwood numbers to drop at Ra=105. Further, the av-
erage Nusselt and Sherwood number increases and drops with the rise of the
power-law index at Ha=30 and Ra=104.

6.2 Effects of buoyancy ratio on fluid flow, heat and mass transfer

Fig.7 displays the isotherms, streamlines and the isoconcentrations for dif-
ferent buoyancy ratios at Ra = 105, Nt = Nb = 0.1, Ha=0 and Le=1. The
comparison between the isotherms demonstrates the rise of the buoyancy ratio
causes the gradient of the isotherms on the hot wall to increase significantly.
Hence, the pattern clarifies that the augmentation of buoyancy ratio enhances
heat transfer. Moreover, the trend is observed in isoconcentrations as they
incline to the hot wall and their gradient augments noticeably. As a result,
mass transfer similar to heat transfer is improved by the increase in buoyancy
ratio. The shapes of the streamlines in different buoyancy ratios can prove the
cited result in the isotherms and isoconcentrations properly since a fixed value
of the streamline (ψ=-0.035) expands with the increase in the buoyancy ratio.

Fig.8 indicates the distribution of velocity in the middle of the cavity and the
local Nusselt and Sherwood numbers on the hot wall are studied for different
Buoyancy ratio numbers (Nr) at Ra = 105, Nt = Nb = 0.1, Ha=0 and Le=1. It
depicts that the local Nusselt and Sherwood numbers on the hot wall augment
gradually as the buoyancy ratio increases. The vertical velocity displays that
the maximum values of the vertical velocity at 0 < Y < 0.2 and 0.8 < Y < 1
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enhance while the vertical velocities at 0.2 < Y < 0.8 shows equivalent values.
It demonstrates that the convection process is augmented with the increase
in the buoyancy ratio.

Fig.9 exhibits the average Nusselt and Sherwood numbers on the hot wall are
studied for different Buoyancy ratio numbers (Nr) at Ra = 105, n=1, Nt = Nb

= 0.1, Ha=0 and Le=1. It shows that average Nusselt and Sherwood numbers
increase with the rise of buoyancy ratio.

6.3 Effects of Thermophoresis and Brownian motion parameters on fluid
flow, heat and mass transfer

Fig.10 demonstrates the isotherms, streamlines and the isoconcentrations for
different Thermophoresis and Brownian motion parameters at Ra = 105, Nr=
0.1, Ha=0 and Le=1. The comparison between the isotherms demonstrates
the rise of the buoyancy ratio causes the gradient of the isotherms on the hot
wall to drop significantly. Hence, the pattern clarifies that the augmentation
of Thermophoresis and Brownian motion parameters declines heat transfer.
However, the gradient of the isoconcentrations augments noticeably with the
increase in the Thermophoresis and Brownian motion parameters. As a result,
mass transfer is ameliorated by the increase in buoyancy ratio. The shapes of
the streamlines in different Brownian motion and Thermophoresis parameters
can prove the amelioration of the convection process since a fixed value of the
streamline (ψ=-0.035) expands with the increase in the buoyancy ratio.

Fig.11 reveals influence of Brownian motion (Nb) and Thermophoresis param-
eters (Nt) on the distribution of velocity in the middle of the cavity while local
Nusselt and Sherwood numbers on the hot wall are studied at Ra = 105, Nr=
0.1, Ha=0 and Le=1. It shows that the local Nusselt number on the hot wall
drops gradually as the Brownian motion and Thermophoresis parameters in-
crease. In contrast with the local Nusselt number, the local Sherwood number
enhances considerably as the Brownian motion and Thermophoresis parame-
ters rise. The vertical velocity indicates that the convection process improves
with the increase in the Brownian motion and Thermophoresis parameters as
the vertical velocity augments significantly.

Fig.12 depicts the average Nusselt and Sherwood numbers in different Brow-
nian motion and Thermophoresis parameters on the hot wall at Ra = 105,
Nr= 0.1, Ha=0 and Le=1. It shows that average Nusselt number decreases
and Sherwood number increases with the rise of Brownian motion and Ther-
mophoresis parameters.
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6.4 Effects of Lewis number on fluid flow, heat and mass transfer

Fig.13 illustrates the isotherms, streamlines and the isoconcentrations for dif-
ferent Lewis numbers at Ra = 105, Nt = Nb = Nr = 0.1, and Ha=0. The
contours exhibit that the density of the isoconcentrations on the hot wall
grows with the increase in Lewis numbers for multifarious Rayleigh numbers
and power-law indexes. The pattern confirms that mass transfer enhances
with the rise of Lewis number generally without consideration to power-law
index and Rayleigh number values. But, the gradient of the isotherms declines
marginally with the augmentation of Lewis number.

Fig.14 discloses the effect of Lewis number on the distribution of velocity in
the middle of the cavity while local Nusselt and Sherwood numbers on the
hot wall are studied at Ra = 105, Nt = Nb = Nr = 0.1, and Ha=0. The
local Sherwood number confirms the trends of the isoconcentrations where
it enhances with the rise of Lewis number substantially. On the other hand,
the local Nusselt number decreases when the Lewis number rises. The vertical
velocity shows that the convection process is not affected considerably by the
increase in the Lewis number as the vertical velocity is almost the same for
different Lewis numbers.

Fig.15 depicts the average Nusselt and Sherwood numbers in different Lewis
numbers on the hot wall at Ra = 105, Nt = Nb = Nr = 0.1, and Ha=0.
It is clear that average Nusselt numbers for different power-law indexes and
Rayleigh numbers decreases with the enhancement of Lewis number, but the
trend is completely different for the average Sherwood number. In fact, the
average Sherwood number rises noticeably as Lewis number augments.

6.5 Effects of power-law index, Rayleigh number and Hartmann numbers on
entropy generation

Fig.16 presents local entropy generation due to heat transfer (ST ) for different
Rayleigh numbers, power-law indexes, and Hartmann numbers at Nt = Nb =
Nr = 0.1, and Le=1. The enhancement of Rayleigh number in multifarious
power-law indexes and Hartmann numbers augment the local entropy genera-
tion due to heat transfer. The local entropy generation due to heat transfer in
different Hartmann numbers illustrates that the increase in power-law index
causes the gradient of the entropy generation and the maximum value of the
entropy generation to drop while the shape of the local entropy generation fol-
low the same pattern in the enclosure. In addition, the rise of Rayleigh number
augments the entropy generations due to heat transfer considerably and the
dense of the irreversibility of heat transfer increases significantly. The increase
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in Hartmann number declines the value of the local entropy generation due
to heat transfer in different Rayleigh numbers and power-law indexes. The
rise of power-law index weakens the local entropy generation in various Hart-
mann numbers; although, the effect of power-law index on the local entropy
generation decreases with the rise of Hartmann number.

Fig.17 illustrates local entropy generation due to fluid friction (SF ) for differ-
ent Rayleigh numbers, power-law indexes, and Hartmann numbers at Nt =
Nb = Nr = 0.1, and Le=1. It demonstrates that the increase in Rayleigh num-
ber for various power-law indexes and Hartmann numbers causes the high
values of the entropy generation to concentrate on the side walls and the local
entropy generation to enhance generally. Moreover, it is clear that there are
high values of the local entropy generation close to the horizontal walls at Ra
= 104 while the regions are completely vanished at Ra = 105. The maximum
values of the local entropy generation due to the fluid friction can exhibit
the influence of the Rayleigh number evidently. It also exhibits that the local
entropy generation due to the fluid friction drops considerably as the power-
law index enhances in multifarious Hartmann numbers and Rayleigh numbers.
However, the irreversibility follows the same patterns and shapes for different
power-law indexes. The Hartmannn number affects the irreversibility due to
the fluid friction significantly. It depicts that the SF drops noticeably when
the Hartmann number increases.

Fig.18 displays local entropy generation due to mass transfer (SD) for different
Rayleigh numbers, power-law indexes, and Hartmann numbers at Nt = Nb =
Nr = 0.1, and Le=1. It shows that the rise of the Rayleigh number enhances
the SD considerably in different power-law indexes and Hartmann numbers.
At Ha=0, the SD weakens as the power-law index rises in different Rayleigh
numbers. The increase in Hartmann number provokes the SD to drop. The
rise of Hartmann number changes the pattern of SD at Ra=104 where the
maximum values transfer from sidewalls to horizontal walls. In addition, the
enhancement of Hartmann number declines the effect of power-law index on
the SD.

Fig.19 displays local entropy generation due to magnetic field (SG) for differ-
ent Rayleigh numbers, power-law indexes, and Hartmann numbers at Nt =
Nb = Nr = 0.1, and Le=1. It shows that the rise of Hartmann number aug-
ments the local entropy generations due to magnetic field. It demonstrates that
the increase in Rayleigh number for various power-law indexes and Hartmann
numbers causes the high values of the entropy generation due to magnetic
field to enhance generally. Moreover, it is clear that there are high values of
the local entropy generation close to the sidewalls. The maximum values of
the local entropy generation due to the magnetic field can exhibit the influ-
ence of the Rayleigh number evidently. It also exhibits that the local entropy
generation due to magnetic field drops considerably as the power-law index
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enhances in multifarious Hartmann numbers and Rayleigh numbers. However,
the irreversibility follows the same patterns and shapes for different power-law
indexes.

Fig.20 demonstrates the summation local entropy generation (SS) for differ-
ent Rayleigh numbers, power-law indexes, and Hartmann numbers at Nt =
Nb = Nr = 0.1, and Le=1. The shape of the total entropy generation at Ha=0
exhibits that the entropy generation due to the fluid friction is dominant in
the total irreversibility. However, the increase in Hartmann number causes the
shape of the local entropy generation to alter; especially, at Ra=104 as the rise
of Hartmann number declines the entropy generation due to fluid friction. It
is clear that the rise of the Rayleigh number augments the total irreversibility
significantly in various Hartmann numbers and power-law indexes. The in-
crease in Hartmann number declines the SS where the maximum value of the
SS drops. This pattern demonstrates that the effect of the entropy generation
due to magnetic field is more significant than the irreversibility due to fluid
friction.

Fig.21 shows the local Bejan number (Be) for different Rayleigh numbers,
power-law indexes, and Hartmann numbers at Nt = Nb = Nr = 0.1, and Le=1.
It shows that the value of the local Bejan number declines generally as the
Rayleigh number enhances. The main reason of the trend is the augmentation
of the SF as the Rayleigh number increases. The maximum value of the local
Bejan number in the both studied Rayleigh numbers expands as the power-
law index enhances. The increase in Hartmann number declines the maximum
value section in the both studied Rayleigh numbers.

Fig.22 indicates the total entropy generations due to heat transfer (ST), fluid
friction (SF), mass transfer (SD), the summation of entropy generations (SS),
and the average Bejan number for different Hartmann numbers, Rayleigh num-
bers and power-law indexes at Nt = Nb = Nr = 0.1, and Le=1. It indicates
that the ST drops gradually as the power-law index enhances for the both
Rayleigh numbers while the increase in the Rayleigh number enhances the
ST in various power-law indexes and Hartmann numbers. However, the effect
of power-law index on ST drops as Hartmann number enhances. The plots
exhibit that the SF drops with the rise of the power-law index as the increase
in the Rayleigh number enhances the SF considerably. It was found that the
SF declines markedly as the Hartmann number increases in the both stud-
ied Rayleigh numbers. Moreover, the shear-thinning behaviour diminishes as
Hartmann number enhances. The augmentation of power-law index at Ha=0
causes SD to drop in the both studied Rayleigh numbers. At Ra=104 , the
magnetic field weakens the power-law index influence where SD is nearly the
same for different power-law indexes at Ha=15 and 30. In addition, the addi-
tion of the magnetic field at Ra=105 decreases the SD in various power-law
indexes and moreover the power-law index effect drops slightly. At Ra=105,
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the increase in Hartmann number enhances SG significantly while the increase
in power-law index declines SG. At Ra=104, the increase in Hartmann number
in the power-law indexes of 0.4 < n < 0.8 rises SG marginally, but the SG
drops with the increase in Hartmann number at n=1. It is found that total
irreversibility (SS) augments substantially with the rise of Rayleigh number
in different power-law indexes and Hartmann numbers. In addition, the rise
of power-law index diminishes the SS in different Hartmann numbers and
Rayleigh numbers. Further, the increase in Hartmann number provokes SS
to decline. The average Bejan number drops at Ra=104 in the absence of a
magnetic field slightly as power-law index augments, but it enhances with the
rise of power-law index in the presence of a magnetic field. At Ra=105, the
increase of power-law index enhances Beavg in different Hartmann numbers.
In addition, it demonstrates that Beavg rises from Ha=0 to 15, but the lowest
values of Beavg were observed at Ha=30.

6.6 Effect of Lewis number on entropy generation

Effect of Lewis number on entropy generations due to fluid friction, heat trans-
fer and mass transfer is displayed at Fig.23 where the local total entropy gen-
eration and Bejan number provide a clear assessment of the parameter in the
figure. The contours of the local entropy generation and maximum values of
the entropy generations demonstrate that the augmentation of Lewis number
from Le=1 to 10 declines the irreversibilities due to fluid frictions while the
entropy generation due to heat transfer enhances marginally. Moreover, en-
tropy generation because of mass transfer is strengthen. In addition, the local
Bejan number exhibits that the rise of Lewis number augments the power of
the local Bejan number in some sections of the cavity. In fact, high values of
irreversibilities are observed in the horizontal sidewalls with the rise of the
Lewis number. In addition, the total local entropy generation shows an en-
hancement with the rise of Lewis number. The comparison between the local
Bejan numbers of the Lewis numbers demonstrates that the increase in Lewis
number strengthens maximum values in the middle of the cavity. At Fig.24, a
comparison between three different Lewis numbers of Le=1, 5, and 10 has been
drawn for different total entropy generations due to heat transfer (ST), fluid
friction (SF), mass transfer (SD), the summation of entropy generations (SS),
and the average Bejan number forNt = Nb = Nr = 0.1, Ha=0, Ra=105 and
n=1. It shows that the ST drops from Le=1 to 5 and then increases from Le=5
to 10. The SF decreases steadily as the Lewis number enhances; although, the
drop is more significant from Le=1 to 5 compared to the decline from Le=5 to
10. Moreover, the SD, SS, and the average Bejan number augment gradually
as the Lewis number increases.
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6.7 Effect of Buoyancy ratio number on entropy generation

The local entropy generations due to fluid friction, heat transfer and mass
transfer are displayed in different Buoyancy ratio numbers at Fig.25 where the
local total entropy generation and Bejan number also have been displayed. It
shows that various entropy generations including the local total entropy gen-
eration becomes stronger as the buoyancy ratio number enhances. In addition,
it demonstrates that the local Bejan number weakens in different sections in
the cavity which clearly exhibits that the enhancement of the Buoyancy ration
number has higher effects on the irreversibility due to fluid friction more than
the entropy generations due to heat and mass transfer. The Fig. 26 indicates
that the total entropy generations due to heat transfer (ST), fluid friction
(SF), mass transfer (SD), and the summation of entropy generations (SS) rise
as the Buoyancy ratio number increases. However, the average Bejan number
exhibits a different trend where drops significantly when the Buoyancy ratio
number enhances.

6.8 Effects of Brownian motion and Thermophoresis parameters on entropy
generation

Effects of Brownian motion and Thermophoresis parameters on the local en-
tropy generations due to fluid friction, heat transfer and mass transfer are ex-
hibited at Fig.27 where the local total entropy generation and Bejan number
also have been shown. It indicates that various entropy generations including
the local total entropy generation become stronger as the Brownian motion
and Thermophoresis parameters enhance. In addition, it shows that the local
Bejan number weakens in different sections in the cavity which demonstrates
that the enhancement of the Brownian motion and Thermophoresis parame-
ters has higher effects on the irreversibility due to fluid friction more than the
entropy generations due to heat and mass transfer. The Fig.28 displays that
the total entropy generations due to fluid friction (SF), mass transfer (SD),
and the summation of entropy generations (SS) rises as the Brownian motion
and Thermophoresis parameters increase. But, the entropy generation due to
heat transfer drops fromNt = Nb = 0.1 to Nt = Nb = 0.5 and augments as
they rise to Nt = Nb = 1. In addition, the average Bejan number declines
significantly when the Brownian motion and Thermophoresis parameters en-
hance.
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7 Concluding Remarks

Entropy generation into natural convection of non-Newtonian nanofluid, using
the Buongiorno’s mathematical model in a cavity in the presence of a mag-
netic field has been analyzed by Finite Difference Lattice Boltzmann method
(FDLBM). This study has been conducted for the pertinent parameters in the
following ranges: the Rayleigh number (Ra = 104 and 105), Hartmann numbers
(Ha = 0, 15, 30), buoyancy ratio number (Nr = 0.1, 1, and 4), power-law index
(n = 0.4 - 1), Lewis number (Le = 1, 5, and 10), Thermophoresis parameter (Nt

= 0.1, 0.5, 1), and Brownian motion parameter (Nb = 0.1, 1, 5). It was found
that heat and mass transfer enhance with augmentation of Rayleigh number.
The increase in Hartmann number causes heat and mass transfer to drop in
different Rayleigh numbers and power-law indexes. Heat and mass transfer
alter as the power-law index changes. The heat and mass transfer decline con-
siderably as the power-law index increases at Ra=105 in different Hartmann
numbers. The influence of the shear-thinning behavior on the nanofluid drops
when Hartmann number rises. Heat and mass transfer augment with the in-
crease in the buoyancy ratio number. The enhancement of the Thermophoresis
and Brownian motion parameters increases mass transfer while it provokes the
heat transfer to drop. The increase in Lewis number enhances mass transfer
considerably and declines the heat transfer. It was observerd that the enhance-
ment of Rayleigh number augments different irreversibilities and the highest
level of growth is observed in the entropy generation due to fluid friction and
magnetic field. Bejan number declines significantly with the augmentation of
Rayleigh number in different power-law indexes and Hartmann numbers which
demonstrates a jump in the irreversibility due to fluid friction. The increase
in the power-law index results in the drop of multifarious entropy generations.
At Ra = 105, the rise of the power-law index enhances the Bejan number in
different Hartmann numbers. It demonstrates that the entropy generations
due to fluid friction and magnetic field are more affected against power-law
index in comparison with the entropy generations of heat and mass transfer.
The rise of Hartmann number declines different entropy generations. In addi-
tion, the increase in Hartmann number provokes the power-law index effect
to drop significantly. The rise of the power-law index enhances the average
Bejan number. The pattern proves that the effect of power-law index on the
irreversibility due to the fluid friction and magnetic field is more significant
compared to the entropy generation due to heat and mass transfer. The high-
est values of the average Bejan number is observed at Ha=15 for Ra=105. The
rise of the Lewis number enhances entropy generation due to heat transfer and
fluid friction while the irreversibility due to the mass transfer and total en-
tropy generation increase. The average Bejan number demonstrates that the
increase in the Lewis number results in the drop of the effect of the entropy
generation due to fluid friction in the total irreversibility. The enhancement of
the buoyancy ratio number provokes the total irreversibility to rise. In other
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words, the optimized energy is achieved in lower buoyancy ratios. The to-
tal entropy generation increases as the Brownian motion and Thermophoresis
parameters augment.
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[10] P. Le Quéré, Accurate solutions to the square thermally driven cavity at high
Rayleigh number, Computers & Fluids 20 (1991) 29–41.

[11] D. R. Chenoweth, Paolucci S. Gas flow in vertical slots with large horizontal
temperature differences, Physics of Fluids 28 (1985) 2365–2374.

[12] D. R. Chenoweth, Paolucci S. Natural convection in an enclosed vertical air
layer with large horizontal temperature differences, Journal of Fluid Mechanics
169 (1986) 173–210.

[13] G. Barakos, E. Mitsoulis, D. Assimacopoulos, Natural convection flows in
a square cavity revisited: laminar and turbulent models with wall functions,
International Journal for Numerical Methods in Fluids 18 (1994) 695–719.

29



[14] O. C. Zienkiewicz, R. L. Taylor, P. Nithiarasu, The Finite Element Method for
Fluid Dynamics (6th edn). Elsevier Butterworth-Heinemann: Amsterdam, 2005.

[15] T. Gjesdal, C. E. Wasberg, B. Reif, Spectral element benchmark simulations
of natural convection in two-dimensional cavities, International Journal for
Numerical Methods in Fluids 50 (2006) 1297–1319.
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Nomenclature

A1 First Rivlin-Ericksen tensor
B Magnetic field
Be Bejan number
C Concentration
c Lattice speed
cp Specific heat at constant pressure
D Mass diffusivity
DB Brownian motion
Df Dufour parameter
DT Thermophoresis coefficients
F External forces
f Density distribution functions
f eq Equilibrium density distribution functions
g Internal energy distribution functions
geq Equilibrium internal energy distribution functions
gy Gravity
Ha Hartmann number
k Thermal conductivity
L Length of the cavity
Le Lewis number
Nb Brownian motion parameter
Nr Buoyancy ratio
Nt Thermophoresis parameter
Nu Nusselt number
p Pressure
Pr Prandtl number
R Gas constant
Ra Rayleigh number
SD Entropy due to mass transfer
SF Entropy due to fluid friction
SG Entropy due to magnetic field
ST Entropy due to heat transfer
SS Summation of entropy generations
Sh Sherwood number
T Temperature
t time
x, y Cartesian coordinates
u Velocity in x direction
v Velocity in y direction

Greek letters
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β Thermal expansion coefficient
φ Relaxation time
σ Electrical conductivity
τ Shear stress
ξ Discrete particle speeds
∆x Lattice spacing
∆t Time increment
α Thermal diffusivity
ρf Density of fluid
ρs Density of solid
η Dynamic viscosity
ψ Stream function value
II Second invariant

Subscripts

avg Average
C Cold
H Hot
x, y Cartesian coordinates
α Numbers of nodes
f Fluid
s Solid
T Thermal
tot Total
D Solutal
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Table 1
Grid independence study at Ra = 105, Ha = 15, n=1, Le = 1 and Nr=Nt=Nb =
0.1

Mesh size Nuavg Shavg

100*100 4.289 1.582

110*110 4.308 0.1.591

120*120 4.428 1.612

130*130 4.491 1.627

140*140 4.528 1.642

150*150 4.536 1.657

160*160 4.536 1.657
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Table 2
Comparison of present study with the results of de Vahl Davis [8] for different
Rayleigh numbers at Pr=0.71

Present study de Vahl Davis [8]

Ra=103 Nuavg 1.118 1.118

Numax 1.505 1.505

Umax 13.644 3.649

Vmax 3.690 3.697

Ra=104 Nuavg 2.243 2.243

Numax 3.528 3.528

Umax 16.170 16.178

Vmax 19.613 19.617

Ra=105 Nuavg 4.519 4.519

Numax 7.717 7.717

Umax 34.725 34.730

Vmax 68.588 68.590
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