Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106472
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorYang, Ten_US
dc.creatorZhao, YLen_US
dc.creatorTong, Yen_US
dc.creatorJiao, ZBen_US
dc.creatorWei, Jen_US
dc.creatorCai, JXen_US
dc.creatorHan, XDen_US
dc.creatorChen, Den_US
dc.creatorHu, Aen_US
dc.creatorKai, JJen_US
dc.creatorLu, Ken_US
dc.creatorLiu, Yen_US
dc.creatorLiu, CTen_US
dc.date.accessioned2024-05-09T00:53:45Z-
dc.date.available2024-05-09T00:53:45Z-
dc.identifier.issn0036-8075en_US
dc.identifier.urihttp://hdl.handle.net/10397/106472-
dc.language.isoenen_US
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.rightsThis is the accepted version of the following article: T. Yang et al. ,Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science 362, 933-937 (2018), which has been published in https://doi.org/10.1126/science.aas8815.en_US
dc.titleMulticomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloysen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage933en_US
dc.identifier.epage937en_US
dc.identifier.volume362en_US
dc.identifier.issue6417en_US
dc.identifier.doi10.1126/science.aas8815en_US
dcterms.abstractAlloy design based on single–principal-element systems has approached its limit for performance enhancements. A substantial increase in strength up to gigapascal levels typically causes the premature failure of materials with reduced ductility. Here, we report a strategy to break this trade-off by controllably introducing high-density ductile multicomponent intermetallic nanoparticles (MCINPs) in complex alloy systems. Distinct from the intermetallic-induced embrittlement under conventional wisdom, such MCINP-strengthened alloys exhibit superior strengths of 1.5 gigapascals and ductility as high as 50% in tension at ambient temperature. The plastic instability, a major concern for high-strength materials, can be completely eliminated by generating a distinctive multistage work-hardening behavior, resulting from pronounced dislocation activities and deformation-induced microbands. This MCINP strategy offers a paradigm to develop next-generation materials for structural applications.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationScience, 23 Nov. 2018, v. 362, no. 6417, p. 933-937en_US
dcterms.isPartOfScienceen_US
dcterms.issued2018-11-23-
dc.identifier.scopus2-s2.0-85057140298-
dc.identifier.pmid30467166-
dc.identifier.eissn1095-9203en_US
dc.description.validate202405 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0566-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS21627572-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Jiao_Multicomponent_Intermetallic_Nanoparticles.pdfPre-Published version1.55 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

9
Citations as of Jun 30, 2024

Downloads

2
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

992
Citations as of Jul 4, 2024

WEB OF SCIENCETM
Citations

933
Citations as of Jul 4, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.