Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106365
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorMa, L-
dc.creatorCheng, L-
dc.date.accessioned2024-05-09T00:53:01Z-
dc.date.available2024-05-09T00:53:01Z-
dc.identifier.issn0003-682X-
dc.identifier.urihttp://hdl.handle.net/10397/106365-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2020 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Ma, L., & Cheng, L. (2020). Numerical and experimental benchmark solutions on vibration and sound radiation of an Acoustic Black Hole plate. Applied Acoustics, 163, Article 107223 is available at https://doi.org/10.1016/j.apacoust.2020.107223.en_US
dc.subjectAcoustic Black Hole (ABH)en_US
dc.subjectBenchmark solutionsen_US
dc.subjectDaubechies wavelet (DW) modelen_US
dc.subjectVibration and noise controlen_US
dc.titleNumerical and experimental benchmark solutions on vibration and sound radiation of an Acoustic Black Hole plateen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume163-
dc.identifier.doi10.1016/j.apacoust.2020.107223-
dcterms.abstractAcoustic Black Hole (ABH) has been attracting the ever-increasing attention from the scientific community as a passive, effective and lightweight solution for vibration and noise mitigations of vibrating structures. Most existing work, however, relies on numerical simulations using Finite Element models, except a few cases where alternative methods are attempted. In general, there is a lack of well-calibrated experimental benchmark solutions for model validations and phenomena assertions, especially in 2D cases where precise fabrication of ABH indentations with well-controlled thickness profile is a challenge. In this paper, a rectangular plate embodied with a symmetric circular ABH indentation is meticulously manufactured and experimentally tested in terms of eigen-frequencies, mode shapes, forced vibration response and radiated sound power in a baffled half-space. These results offer useful benchmark solutions for future ABH studies. In particular, experimental results show a high consistency with the ones predicted by the previously developed 2D Daubechies wavelet (DW) model.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied acoustics, June 2020, v. 163, 107223-
dcterms.isPartOfApplied acoustics-
dcterms.issued2020-06-
dc.identifier.scopus2-s2.0-85078696009-
dc.identifier.eissn1872-910X-
dc.identifier.artn107223-
dc.description.validate202405 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0256en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS20535670en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Ma_Numerical_Experimental_Benchmark.pdfPre-Published version2.65 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

4
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

35
Citations as of Jul 4, 2024

WEB OF SCIENCETM
Citations

31
Citations as of Jul 4, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.