Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106318
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorLiu, Wen_US
dc.creatorCheng, Pen_US
dc.creatorYan, Xen_US
dc.creatorGou, Hen_US
dc.creatorZhang, Sen_US
dc.creatorShi, Sen_US
dc.date.accessioned2024-05-09T00:52:42Z-
dc.date.available2024-05-09T00:52:42Z-
dc.identifier.urihttp://hdl.handle.net/10397/106318-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.rights© 2021 American Chemical Societyen_US
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Sustainable Chemistry & Engineering, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acssuschemeng.0c09203.en_US
dc.subjectCuxOen_US
dc.subjectHollow microcagesen_US
dc.subjectLithium-ion batteryen_US
dc.subjectNanoporous structureen_US
dc.subjectSolution-phase routeen_US
dc.titleFacile one-step solution-phase route to synthesize hollow nanoporous CuₓO microcages on 3D copper foam for superior Li storageen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage4363en_US
dc.identifier.epage4370en_US
dc.identifier.volume9en_US
dc.identifier.issue12en_US
dc.identifier.doi10.1021/acssuschemeng.0c09203en_US
dcterms.abstractIn this report, we develop a simple and effective one-step solution-phase route to in situ synthesize hollow nanoporous CuxO microcages on 3D copper foam. When used as an anode for lithium-ion batteries, the unique 3D electrode exhibits superior Li storage properties with a first reversible capacity of 2.82 mAh cm–2 and 78.4% capacity retention after 400 cycles at 2 mA cm–2. The excellent electrochemical performance can be ascribed to the stable hollow structure and robust nanoporous shells of CuxO microcages, as well as in situ growth of microcages on a copper foam substrate with a 3D porous architecture, which is greatly beneficial to buffer large volume changes, increase the loading mass of active material, and boost the binding force between the active material and substrate, as well as shorten the Li+ and electron migration distance.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationACS sustainable chemistry & engineering, 29 Mar. 2021, v. 9, no. 12, p. 4363-4370en_US
dcterms.isPartOfACS sustainable chemistry & engineeringen_US
dcterms.issued2021-03-29-
dc.identifier.scopus2-s2.0-85103789708-
dc.identifier.eissn2168-0485en_US
dc.description.validate202405 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0136-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextthe National Natural Science Foundation of China; the National Key Research and Development Program of China; the International S&T Innovation Cooperation Program of Sichuan Province; the Chengdu International S&T Cooperation Funded Project; the "1000 Talents Plan" of Sichuan Province; the Experimental Technology Project of Sichuan University; the Talent Introduction Program of Sichuan Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS48285210-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Shi_Facile_One-Step_Solution-Phase.pdfPre-Published version1.71 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

11
Citations as of Jun 30, 2024

Downloads

2
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

11
Citations as of Jul 4, 2024

WEB OF SCIENCETM
Citations

11
Citations as of Jul 4, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.