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ABSTRACT 

In this report, we develop a simple and effective one-step solution-phase route to 

in-situ synthesize hollow nanoporous CuxO microcages on 3D copper foam. When 

used as an anode for lithium-ion batteries, the unique 3D electrode exhibits superior 

Li storage properties with first reversible capacity of 2.82 mAh cm-2 and 78.4% 

capacity retention after 400 cycles at 2 mA cm-2. The excellent electrochemical 

performance can be ascribed to the stable hollow structure and robust nanoporous 

shells of CuxO microcages, as well as in-situ growth of microcages on copper foam 

substrate with 3D porous architecture, which is greatly beneficial to buffer large 

volume change, increase loading mass of active material, boost binding force between 

active material and substrate, as well as shorten Li+ and electron migration distance. 

KEYWORDS: Solution-phase route; hollow microcages; nanoporous structure; CuxO; 

Lithium ion battery 
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◼ INTRODUCTION 

In recent years, lithium-ion batteries (LIBs) have great advantages of high 

energy/power density, long cycle life and good safety in use, which can be widely 

applied in portable electronic devices, pure/hybrid electric vehicles and other modern 

industrial fields. At present, graphite, as the traditional anode of commercial LIBs, has 

been increasingly unable to meet the demands of modern society and technology for 

next-generation LIBs with higher energy density.1-3 Therefore, it needs to be urgent to 

develop alternative anode materials with high specific capacity. Recently, transition 

metal oxides have aroused tremendous interest due to their high theoretical capacities 

from multi-electron reactions with Li+ and excellent rate performance from the 

diversity of electrode structure.4-8 Among them, copper(I/II) oxides have the merits of 

high theoretical capacity, natural abundance, low cost and environmental friendliness, 

which is expected to be promising anode candidates for advanced LIBs.9-12 However, 

until now, their commercialization still is severely hampered because of poor cycling 

stability and low coulombic efficiency caused by the large volume variation and low 

electronic conductivity during cycling.13,14 

To address these issues, many strategies have been developed by anode structure 

design. Especially, introducing the hollow structure is an effective method. Today, 

researchers have successfully prepared various copper oxides with different hollow 

structures, such as hollow CuO spheres, hollow Cu2O cages and hollow CuO/Cu2O 

composite polyhedrons by well-developed removable template approaches.15-17 The 

stable hollow structure can effectively utilize its internal space to buffer the large 
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volume change, thus enhancing the cycling stability of the electrode after long cycles. 

On the other hand, the development of porous structure can also greatly improve 

the electrochemical performance of copper oxides.18-20 For example, Yue et al. 

reported pillow-shaped porous CuO electrode synthesized by controlled thermal 

decomposition of CuC2O4 precursor, which delivered an initial discharge capacity of 

2.50 mAh cm-1 and 83.3% discharge-capacity retention after 50 cycles at a rate of 0.1 

C.21 This is mainly attributed to its unique pillow-shaped porous structure, which 

provides more electrochemical active sites reacting with Li+ and accelerate organic 

electrolyte permeation, thus improving the specific capacity. 

Enlightened by these, we have reasons to believe that the combination of hollow 

and porous structures might be a rational way to enhance the Li storage performance. 

It should be noted that, however, the present hollow or porous electrode materials are 

usually made into powders and slurries, and then coated on the surfaces of 

two-dimensional conductive current collectors. It largely leads to the gradual decrease 

of cycling stability due to the aggregation or pulverization of active materials during 

repeated charge-discharge processes, which limits their wide application in the near 

future.22-23 To overcome above drawbacks, fabricating bulk 3D integrated electrode 

with hollow porous structure would be a more desirable route to improve its 

electrochemical and structural durability during a long-cycle process. 

Herein, we report a simple and effective one-step solution-phase route to in-situ 

synthesize hollow nanoporous CuxO microcages on 3D copper foam. Compared with 

conventional template methods or other multi-step synthesis routes, the developed 
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template-free one-step solution-phase strategy has obvious advantages of simple 

process, low cost, nearly absolute yield and is suitable for large-scale synthesis. The 

unique 3D electrode as anode for LIBs exhibits superior Li storage performance with 

first reversible capacity of 2.82 mAh cm-2 and 78.4% capacity retention after 400 

cycles at a current density of 2 mA cm-2, which is closely related to the stable hollow 

structure and robust nanoporous shells of CuxO microcages, as well as in-situ growth 

of microcages on copper foam substrate with 3D porous architecture. We believe that 

this work can provide a promising anode candidate toward practical application of 

high-performance LIBs. 

◼ RESULTS AND DISCUSSION 

The hollow nanoporous CuxO microcages on 3D copper foam (3D-CF@CuxO MCs) 

can be prepared by a facile one-step solution-phase route by immersing 3D copper 

foam in a mixed solution of urea and Fe(OH)3·9H2O at 90℃, as illustrated in Fig. 1a. 

The typical reaction times are 6, 12 and 20 h, and the corresponding products are 

denoted as 3D-CF@CuxO MCs-6, 3D-CF@CuxO MCs-12 and 3D-CF@CuxO 

MCs-20, respectively. More experimental details can be found in the Supplementary 

Information. Fig. 1b-d shows the typical SEM and TEM images of 3D-CF@CuxO 

MCs-12. As can be seen clearly in Fig. 1b and its inset, plenty of CuxO microcages 

with uniform sizes can be observed on the surfaces of pore walls of 3D copper foam. 

In contrast to the bare 3D copper foam substrate (Fig. S1), it is easy to find that these 

CuxO microcages are more prone to grow on flat places rather than backbones (that is 

intersections of pore walls with different orientations) due to the good binding force 
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with substrate. Intriguingly, the high-magnification SEM images (Fig. 1c and its inset) 

of a typical cracked microcage further display that the interior of microcage is hollow 

structure and its shell is nanoporous structure made of lots of tiny nanoparticles with 

average sizes of 20-30 nm. All these details can be further confirmed by the TEM 

observation shown in Fig. 1d. The striking contrast between bright and dark areas 

indicates that the microcage is typical hollow structure with shell thickness of ca. 150 

nm. Meanwhile, the present TEM results also can fully demonstrate that the shell of 

the hollow microcage is nanoporous structure. 

X-ray diffraction (XRD) is conducted to identify the crystal structure of the 

3D-CF@CuxO MCs-12, as presented in Fig. 1e. The XRD pattern indicates that all 

the diffraction peaks can be assigned to Cu (PDF No. 04-0836), Cu2O (PDF No. 

05-0667), CuO (PDF No. 44-0706), respectively. No other impurities can be detected, 

demonstrating the three-phase coexistence in the as-obtained samples. X-ray 

photoelectron spectroscopy (XPS) is performed to detect the oxidation states of the 

3D-CF@CuxO MCs-12. From the survey full spectrum, we can find the coexistence 

of Cu, O and Fe in the as-obtained samples, in which the Fe element may come from 

the uncleaned Fe3+ in solution (Fig. S2). The high-resolution XPS spectrum of Cu 2p 

in Fig. 1f exhibits that the two peaks at 932.35 and 952.24 eV correspond to the Cu 

2p3/2 and Cu 2p1/2 peaks of Cu(I) in Cu2O, while the other two peaks at 934.24 and 

954.22 eV designate to the Cu 2p3/2 and Cu 2p1/2 peaks of Cu(II) in CuO.24 The 

high-resolution XPS spectrum of O 1s in Fig. 1g can be fitted into four peaks. The 

two peaks at 529.26 and 529.99 eV correspond to lattice oxygen within CuO and 
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Cu2O, while the other two peaks at 531.02 and 532.71 eV may originate from O2 and 

H2O adsorbed physically on sample surfaces.25,26 Evidently, the present XPS results 

further confirm the coexistence of Cu2O and CuO in the samples, in good agreement 

with the XRD analysis above. 

To further understand the formation mechanism, the microstructure evolution of 

3D-CF@CuxO MCs was investigated systematically by characterizing the products 

obtained after different reaction times. Fig. 2 shows the representative SEM images of 

3D-CF@CuxO MCs obtained at 90℃ for 6, 12 and 20 h, respectively. The reaction 

time was found to be crucial to achieve the ideal hollow nanoporous structure of 

microcage. It can be seen that when the reaction time is 6 h, just a number of solid 

microcubes can be prepared on the surfaces of 3D copper foam substrates (Fig. 2a). 

With the reaction time extending to 12 h, it is interesting that these solid microcubes 

can be gradually transformed into hollow microcages with uniform nanoporous shells 

(Fig. 2b). As the reaction time further increases (20 h), the nanoporous shells of these 

hollow microcages continually coarsen and eventually severely collapse (Fig. 2c). 

Note that, in Fig. 2b-c, the hollow structure of CuxO MCs can be intuitively judged by 

the partial collapse at the center of nanoporous shells, whereas those small-sized (<1 

μm) CuxO MCs often without the partial collapse phenomenon still have the hollow 

structure in nature, which can be well confirmed by TEM observation in Fig. 1d. The 

phase composition of products with different reaction times is further examined by 

XRD, which indicates the coexistence of Cu, Cu2O and CuO in all these samples (Fig. 

S3). As a result, it can be reasonable to believe that in the formation process of 
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3D-CF@CuxO MCs, the phase composition remains unchanged but only the structure 

evolves. We speculate that the evolution law involves three main processes. (1) 

During the initial reaction stage (0~6 h), copper oxide nanoparticles quickly aggregate 

to reduce the overall energy of system and self-assemble into solid microcubes.27 (2) 

During the subsequent reaction stage (6~12 h), the solid microcubes gradually hollow 

inside and then evolve into hollow nanoporous microcages through Ostwald ripening 

effect.28 (3) During the over-reaction stage (12~20 h), the nanoporous shells of hollow 

microcages constantly coarsen and finally severely collapse at the center of 

nanoporous shells due to rapid diffusion of surface atoms of nanoporous shells in 

solution driven by elevated temperature. Additionally, the probable formation 

mechanism of copper oxides is as follows. The urea was hydrolyzed into NH3·H2O at 

90℃ and meanwhile, copper atoms on the surfaces of copper foams can be oxidated 

to Cux+ (x=1, 2) by reduction of Fe3+ in the Fe(NO3)3·9H2O solution.29 Then, the 

copper oxides can be obtained by the transformation of Cu(NH3)4
x+ complex ions, 

which are formed by the combination of NH3 and Cux+ (x=1, 2).30 The main reactions 

involved are shown below: 

                CO(NH2)2+H2O → CO2+2NH3
                                      (1) 

xFe3++Cu → xFe2++Cux+ (x=1, 2)                       (2) 

Cux+ + 4NH3 → Cu(NH3)4
x+ (x=1, 2)                    (3) 

NH3+H2O → NH4
++OH-                               (4) 

             Cu(NH3)4
x++xOH- → CuxO +H2O

 + 4NH3 (x=1, 2)          (5) 

Besides, to explore the key forming factors in the one-step solution-phase route, the 

90℃ 
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same experimental procedure was also carried out on various substrates with different 

components and structures, such as 3D nickel foam, 2D copper foil, 2D 304 stainless 

steel sheet, and 2D SiC ceramic chip. The typical SEM images were illustrated in Fig. 

S4. Clearly, just can on 2D copper foil substrate observe hollow nanoporous 

microcages similar to those on 3D copper foams, indicating the key forming factor 

just is component Cu and has nothing to do with substrate structures, such as shape, 

curvature, roughness and so on. Evidently, compared to the 2D Cu foil substrates used 

in commercial cells, the chosen 3D Cu foams with larger specific surface areas can 

grow more microcages as active material to effectively boost Li storage capability of 

electrodes.31-34 In addition, it has been found that the synergistic effect of urea and 

Fe(NO3)3·9H2O in the solution is also greatly important for the formation of hollow 

nanoporous microcages. The 3D copper foam was attempted to immerse in a single 

urea or Fe(NO3)3·9H2O solution under the same experimental conditions, but the 

microcages cannot be obtained (Fig. S5). 

The electrochemical performance of 3D-CF@CuxO MCs-12 electrode is presented 

in Fig. 3. Fig. 3a shows the continuous CVs measured at a scan rate of 0.1 mV s-1 in 

the potential range of 0.01-3.0 V (vs. Li/Li+), in which the open circuit voltage (OCV) 

is ca. 2.12 V (vs. Li/Li+). During the first discharge process, three reduction peaks are 

observed clearly at 1.58, 1.05 and 0.67 V (vs. Li/Li+). The peak at 1.58 V (vs. Li/Li+) 

can be attributed to the transformation of CuO to an intermediate composite copper 

oxide solid solution (CuII
1-xCuIO1-x/2 (0 < x < 0.4)).35 The peak at 1.05 V (vs. Li/Li+) 

corresponds to the further conversion from the copper oxide solid solution to 
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Cu2O.35,36 The big and broad peak at 0.67 V (vs. Li/Li+) is ascribed to the 

transformation from Cu2O to Cu along with the growth of solid electrolyte interface 

(SEI) films.37 In contrast, during the first charge process, three oxidation peaks can be 

observed at 1.15, 1.66 and 2.52 V (vs. Li/Li+), assigning to the partial decomposition 

of SEI films, as well as the multistep reversible transformation of Cu to Cu2O and 

CuO, respectively.38,39 It is worth noting that the oxidation peak of SEI films located 

at 1.15 V (vs. Li/Li+) is very small and almost disappears after the 1st cycle, 

suggesting its good stability. Moreover, the subsequent CV curves are just completely 

overlapped with each other, indicating the excellent electrochemical reversibility of 

the electrode. 

Fig. 3b illustrates the cycle performance of 3D-CF@CuxO MCs-12 electrode at 2 

mA cm-2; meanwhile, the counterparts of 3D-CF@CuxO MCs-6 and 3D-CF@CuxO 

MCs-20 electrodes are also added for clear comparison. For 3D-CF@CuxO MCs-12 

electrode, the charge and discharge specific capacities slightly decrease in the initial 

20 cycles and then tend to be stable, finally remaining the reversible capacity of 2.21 

mAh cm-2 after 400 cycles with 78.4% capacity retention. Note that the initial 

coulombic effciency is just ca. 43%, which mainly stems from the partial irreversible 

conversion of copper oxides, formation of SEI films and interfacial spaces consuming 

lots of Li+.38 In fact, this phenomenon can be found in most TMOs-based electrode 

materials.40,41 Except for the first several cycles, the coulombic efficiency is 

always >99.7 %, indicative of its good electrochemical reversibility. In contrast, the 

3D-CF@CuxO MCs-6 and 3D-CF@CuxO MCs-20 electrodes just deliver the 
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reversible capacities of 1.48 mAh cm-2 after 200 cycles with 73.3% capacity retention 

and 1.17 mAh cm-2 after 150 cycles with 53.4% capacity retention, respectively. 

Obviously, compared to the 3D-CF@CuxO MCs-6 and 3D-CF@CuxO MCs-20 

electrodes, the 3D-CF@CuxO MCs-12 electrode exhibits higher reversible capacity, 

longer cycle life and better cycling stability, implying that the ideal hollow 

nanoporous structure of microcage plays a key role in improving the Li storage 

performance. Firstly, the stable hollow structure inside microcages can offer ample 

rooms to alleviate the large volume and structure changes during cycling. Secondly, 

the robust nanoporous shells of microcages can promote fast permeation of organic 

electrolyte and provide sufficient active sites for Li+ insertion and extraction. It is 

worth noting that the arrangement of CuxO MCs on 3D copper foam may not be a 

main factor to affect its electrochemical behavior because the similar electrochemical 

properties always can be obtained steadily for the 3D-CF@CuxO MCs-12 electrodes 

with different random arrangements of CuxO MCs, indicating its good reproducibility. 

Additionally, a comparison of Li storage properties of various CuxO-based electrode 

materials with different structure designs reported in the recent literature has been 

listed in detail in Table S1. Obviously, the higher areal capacity and longer cycle life 

can be achieved well in the 3D-CF@CuxO MCs electrode. 

The rate capability of the 3D-CF@CuxO MCs-12 electrode was further investigated 

under different current densities, as displayed in Fig. 3c. Clearly, the large reversible 

specific capacities of 3.07, 2.03, 1.51 and 1.07 mAh cm-2 can be achieved after every 

10 cycles at current densities of 1, 2, 4 and 8 mA cm-2, respectively. When the current 
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density returns to the initial value (1 mA cm-2), the reversible capacity can quickly 

increase to 2.78 mAh cm-2, maintaining as high as ca. 90.6% capacity retention. Even 

after undergoing various high-rate cycles, the 3D-CF@CuxO MCs-12 electrode still 

can deliver a relatively large reversible capacity of 2.45 mAh cm-2 after 120 cycles, 

indicating its superior rate capability. This can be ascribed to the structure design in 

nanoporous shells of hollow microcages, which greatly facilitates to provide more 

Li+/electron transfer channels and shorten Li+ diffusion distance in active material. 

This can be further discussed on a basis of the EIS results in the following part. 

The Nyquist plots of the 3D-CF@CuxO MCs-12 electrode before and after 400 

cycles were tested, as presented in Fig. 3d, in which the compressed semicircle in 

high-medium frequency region stands for charge transfer resistance (Rct) related to the 

electrochemical reactions on electrode/electrolyte interfaces. Obviously, compared to 

the counterpart (ca. 150 Ω) before cycling, the Rct value of of the 3D-CF@CuxO 

MCs-12 electrode after 400 cycles can be identified to be just ca. 105 Ω, suggesting 

the better Li+ and electron transport abilities in the 3D-CF@CuxO MCs-12 electrode. 

The present EIS results clearly demonstrate that the unique 3D electrode structure 

(including a 3D porous substrate, even distribution of hollow microcages and good 

binding force between them by in-situ growth) is significantly beneficial for rapid Li+ 

diffusion, electron transport and electrode/electrolyte wettability. 

Fig. 4a-b shows the SEM images of the 3D-CF@CuxO MCs-12 electrode after 400 

cycles. Clearly, the microstructure of the 3D-CF@CuxO MCs-12 electrode after 

cycling has little change relative to that before cycling (Fig. 4a). Especially, the 
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microcages are still evenly distributed on 3D copper foam substrate without the 

visible aggregation, pulverization or exfoliation (inset in part a). Moreover, the 

high-magnification SEM image in Fig. 4b further exhibits that the shells of hollow 

microcages still maintain good nanoporous structure and no obvious damage or 

collapse take place after 400 cycles, indicating its good mechanical integrity and 

structure stability. The superior electrochemical performance of 3D-CF@CuxO 

MCs-12 electrode by the one-step solution-phase route demonstrates the essential 

merits of in-situ growth of hollow nanoporous CuxO microcages on 3D copper foam 

substrate, as illustrated in Fig. 4c. (I) The stable microcages with ample hollow 

structure can effectively buffer the large volume and structure changes during 

repeated lithiation-delithiation processes, improving the cycling ability. (II) The 

nanoporous shells of microcages can offer more Li+ and electron transfer channels as 

well as shorten Li+ diffusion distance in active material, boosting the rate capability. 

(III) The copper foam as 3D substrate with micron-sized porous structure can grow 

more active materials and increase contact areas between electrolyte and electrode, 

enhancing the areal capacity of the electrode. (IV) The in-situ growth of microcages 

on copper foam without use of binders and conductive agents can markedly increase 

the binding force and further ameliorate energy and power densities. 

◼ CONCLUSION 

A simple and effective one-step solution-phase route has been developed to in-situ 

prepare hollow nanoporous CuxO microcages on 3D copper foam substrate. As an 

anode for LIBs, the unique 3D electrode exhibits excellent Li storage properties with 
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first reversible capacity of 2.82 mAh cm-2, 78.4% capacity retention and > 99.7% 

coulombic efficiency after 400 cycles. The good electrochemical performance can be 

closely related to the the stable hollow structure and robust nanoporous shells of CuxO 

microcages, as well as in-situ growth of microcages on 3D copper foam substrate with 

micron-sized porous architecture. 
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Figure Captions: 

Fig. 1. Fabrication and structure characterization of 3D-CF@CuxO MCs 

electrode. (a) Schematic of preparation process of the 3D-CF@CuxO MCs electrode. 

(b-c) Typical SEM images of the 3D-CF@CuxO MCs-12 electrode, in which the 

insets in part b and c are the low-magnification image of the electrode and locally 

magnified image of nanoporous shells of the CuxO microcages. (d) Typical TEM 

image of hollow nanoporous CuxO microcages. (e) XRD pattern of the 3D-CF@CuxO 

MCs-12 electrode. (f-g) High-resolution XPS spectra of Cu 2p and O 1s for the 

3D-CF@CuxO MCs-12 electrode. 

Fig. 2. Structure evolution and formation mechanism of 3D-CF@CuxO MCs 

electrode. SEM images of (a) the 3D-CF@CuxO MCs-6, (b) the 3D-CF@CuxO 

MCs-12 and (c) the 3D-CF@CuxO MCs-20 electrodes, respectively. 

Fig. 3. Electrochemical performance of 3D-CF@CuxO MCs electrode as anode 

for LIBs. (a) CVs of the 3D-CF@CuxO MCs-12 electrode for the first three cycles 

ranging from 0.01 to 3.0 V (vs. Li/Li+) at a scan rate of 0.1 mV s−1. (b) Cycle 

performance of the 3D-CF@CuxO MCs-6, 3D-CF@CuxO MCs-12 and 

3D-CF@CuxO MCs-20 electrodes at a current density of 2 mA cm-2. (c) Rate 

capability profiles of the 3D-CF@CuxO MCs-12 electrode at current densities of 1, 2, 

4, and 8 mA cm-2. (d) Nyquist plots of the 3D-CF@CuxO MCs-12 electrode before 

cycling and after 400 cycles. 

Fig. 4. Structure characterization after cycling and lithium storage mechanism of 

3D-CF@CuxO MCs electrode. (a-b) SEM images of the 3D-CF@CuxO MCs-12 
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electrode after 400 charge-discharge cycles, in which the inset in part a is the 

corresponding low-magnification SEM image. (c) Schematic illustration for 

lithiation-delithiation reaction of the 3D-CF@CuxO MCs-12 electrode.



 24 

      

 

 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

Fig. 1. Fabrication and structure characterization of 3D-CF@CuxO MCs 

electrode. (a) Schematic of preparation process of the 3D-CF@CuxO MCs electrode. 
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(b-c) Typical SEM images of the 3D-CF@CuxO MCs-12 electrode, in which the 

insets in part b and c are the low-magnification image of the electrode and locally 

magnified image of nanoporous shells of the CuxO microcages. (d) Typical TEM 

image of hollow nanoporous CuxO microcages. (e) XRD pattern of the 3D-CF@CuxO 

MCs-12 electrode. (f-g) High-resolution XPS spectra of Cu 2p and O 1s for the 

3D-CF@CuxO MCs-12 electrode. 
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Fig. 2. Structure evolution and formation mechanism of 3D-CF@CuxO MCs 

electrode. SEM images of (a) the 3D-CF@CuxO MCs-6, (b) the 3D-CF@CuxO 

MCs-12 and (c) the 3D-CF@CuxO MCs-20 electrodes, respectively. 
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Fig. 3. Electrochemical performance of 3D-CF@CuxO MCs electrode as anode 

for LIBs. (a) CVs of the 3D-CF@CuxO MCs-12 electrode for the first three cycles 

ranging from 0.01 to 3.0 V (vs. Li/Li+) at a scan rate of 0.1 mV s−1. (b) Cycle 

performance of the 3D-CF@CuxO MCs-6, 3D-CF@CuxO MCs-12 and 

3D-CF@CuxO MCs-20 electrodes at a current density of 2 mA cm-2. (c) Rate 

capability profiles of the 3D-CF@CuxO MCs-12 electrode at current densities of 1, 2, 

4, and 8 mA cm-2. (d) Nyquist plots of the 3D-CF@CuxO MCs-12 electrode before 

cycling and after 400 cycles. 
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Fig. 4. Structure characterization after cycling and lithium storage mechanism of 

3D-CF@CuxO MCs electrode. (a-b) SEM images of the 3D-CF@CuxO MCs-12 

electrode after 400 charge-discharge cycles, in which the inset in part a is the 

corresponding low-magnification SEM image. (c) Schematic illustration for 

lithiation-delithiation reaction of the 3D-CF@CuxO MCs-12 electrode. 
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A facile one-step solution-phase route was developed to synthesize 3D-CF@CuxO 

MCs with superior Li storage properties towards renewable energy sources. 
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