Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/104209
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorFeng, Sen_US
dc.creatorLi, Len_US
dc.creatorChan, KCen_US
dc.creatorZhao, Len_US
dc.creatorPan, Sen_US
dc.creatorWang, Len_US
dc.creatorLiu, Ren_US
dc.date.accessioned2024-02-05T08:47:10Z-
dc.date.available2024-02-05T08:47:10Z-
dc.identifier.issn0966-9795en_US
dc.identifier.urihttp://hdl.handle.net/10397/104209-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2019 Published by Elsevier Ltd.en_US
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Feng, S., Li, L., Chan, K. C., Zhao, L., Pan, S., Wang, L., & Liu, R. (2019). Tuning deformation behavior of Cu0.5CoNiCrAl high-entropy alloy via cooling rate gradient: An atomistic study. Intermetallics, 112, 106553 is available at https://doi.org/10.1016/j.intermet.2019.106553.en_US
dc.subjectHigh–entropy alloysen_US
dc.subjectDislocation structureen_US
dc.subjectGrain boundaryen_US
dc.subjectMicrostructureen_US
dc.subjectPlastic deformation uniten_US
dc.subjectMolecular dynamic simulationen_US
dc.titleTuning deformation behavior of Cu₀.₅CoNiCrAl high-entropy alloy via cooling rate gradient : an atomistic studyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume112en_US
dc.identifier.doi10.1016/j.intermet.2019.106553en_US
dcterms.abstractThe deformation behaviors of body-centered cubic Cu0.5CoNiCrAl high-entropy alloys processed by the cooling rate gradient are investigated by the molecular dynamics simulations. The plastic deformation ability of the high-entropy alloy is significantly improved by triggering multiple-type dislocation slips along different deformation paths. The cooling rate gradient introduces abundant atomic vacancies, proliferating the nucleation sites of dislocations. Additionally, the nucleation barriers of dislocations are reduced by the resultant structural disorder, high potential energy and chemical segregation. Consequently, the cooling rate gradient enhances the structural heterogeneity, promoting the formation of multiple deformation paths and preventing strain localization.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIntermetallics, Sept 2019, v. 112, 106553en_US
dcterms.isPartOfIntermetallicsen_US
dcterms.issued2019-09-
dc.identifier.scopus2-s2.0-85068213930-
dc.identifier.eissn1879-0216en_US
dc.identifier.artn106553en_US
dc.description.validate202402 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberISE-0436-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Program for the Top Young Talents of Higher Learning Institutions of Hebei; the Hong Kong Polytechnic University; US National Science Foundationen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS20603592-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Feng_Tuning_Deformation_Behavior.pdfPre-Published version1.26 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

100
Last Week
3
Last month
Citations as of Nov 30, 2025

Downloads

71
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

18
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

17
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.