Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103781
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Computingen_US
dc.contributorSchool of Nursingen_US
dc.creatorWang, Jen_US
dc.creatorZhao, Zen_US
dc.creatorDeng, Zen_US
dc.creatorChoi, KSen_US
dc.creatorGong, Len_US
dc.creatorShi, Jen_US
dc.creatorWang, Sen_US
dc.date.accessioned2024-01-03T07:51:32Z-
dc.date.available2024-01-03T07:51:32Z-
dc.identifier.issn1063-6706en_US
dc.identifier.urihttp://hdl.handle.net/10397/103781-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication J. Wang et al., "Manifold-Regularized Multitask Fuzzy System Modeling With Low-Rank and Sparse Structures in Consequent Parameters," in IEEE Transactions on Fuzzy Systems, vol. 30, no. 5, pp. 1486-1500, May 2022 is available at https://doi.org/10.1109/TFUZZ.2021.3062691.en_US
dc.subjectData modelsen_US
dc.subjectFuzzy systemsen_US
dc.subjectImagingen_US
dc.subjectLinear regressionen_US
dc.subjectLow-rank structureen_US
dc.subjectMultitask learningen_US
dc.subjectOptical fibersen_US
dc.subjectSecurityen_US
dc.subjectTask analysisen_US
dc.subjectTSK fuzzy systemen_US
dc.titleManifold-regularized multitask fuzzy system modeling with low-rank and sparse structures in consequent parametersen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1486en_US
dc.identifier.epage1500en_US
dc.identifier.volume30en_US
dc.identifier.issue5en_US
dc.identifier.doi10.1109/TFUZZ.2021.3062691en_US
dcterms.abstractMultitask modeling methods for Takagi-Sugeno-Kang (TSK) fuzzy systems exhibit better generalization ability attributed to the utilization of the knowledge of inter-task correlation. However, existing methods usually ignore the balance between the sharing of the common knowledge across multiple tasks and the preservation of the task-specific characteristics of each rule. To this end, we propose a novel manifold-regularized multitask modeling method for TSK fuzzy system by introducing low-rank and sparse structures into consequent parameters across multiple tasks. Specifically, we decompose the consequent parameters into two components the low-rank structure shared by multiple tasks and the task-specific component that encodes the sparse characteristics of the individual tasks. An efficient Augmented Lagrange Multiplier is developed to solve the optimization problem. The experimental results demonstrate that the proposed model significantly outperforms the existing methods. IEEEen_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIEEE transactions on fuzzy systems, May 2022, v. 30, no. 5, p. 1486-1500en_US
dcterms.isPartOfIEEE transactions on fuzzy systemsen_US
dcterms.issued2022-05-
dc.identifier.scopus2-s2.0-85102279322-
dc.identifier.eissn1941-0034en_US
dc.description.validate202208_bcwwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberSN-0081-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS53368175-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Choi_Manifold-regularized_Multitask_Fuzzy.pdfPre-Published version2.33 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

140
Last Week
2
Last month
Citations as of Nov 9, 2025

Downloads

103
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

8
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

5
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.