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Abstract—Multitask modeling methods for Takagi-

Sugeno-Kang (TSK) fuzzy systems exhibit better 

generalization ability attributed to the utilization of the 

knowledge of inter-task correlation. However, these 

methods usually ignore the balance between the sharing of 

the common knowledge across multiple tasks and the 

preservation of the task-specific characteristics of each rule. 

To this end, we propose a novel manifold-regularized 

multitask modeling method for TSK fuzzy system by 

introducing low-rank structure and sparse consequent 

parameters. Specifically, we decompose the consequent 

parameters into two components – the low-rank structure 

shared by multiple tasks and the task-specific component 

that encodes the sparse characteristics of the individual 

tasks. An efficient Augmented Lagrange Multiplier is 

developed to solve the optimization problem. The 

experimental results demonstrate that the proposed model 

significantly outperforms the existing methods. 

Index Terms—TSK fuzzy system, multitask learning, low-rank 

structure. 

I. INTRODUCTION

UZZY systems are developed based on fuzzy logic and

fuzzy inference. They are specialized in describing the 

uncertainty of knowledge and expression, and are able to 

approximate uncertain nonlinear systems better than 

conventional machine learning models [1]. Various models 

have been developed as a result of recent advances in fuzzy 

systems. Among them, the Takagi-Sugeno-Kang (TSK) fuzzy 

system is the most popular one that provides an effective 

framework to reduce nonlinear systems into multiple local 

linear structures [2-6]. 
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TSK fuzzy systems include several fuzzy rules, which are 

expressed in the form of IF-THEN statements. The modeling of 

TSK fuzzy systems includes two fundamental steps [7, 8]. In 

the first step, the premise of the fuzzy rules is extracted by 

partitioning the data into several groups. In data driven 

modeling, clustering methods can be used to achieve this goal. 

In the second step, the consequent parameters of the fuzzy rules 

are learned. From the perspective of machine learning, this step 

is always considered as a linear regression problem. Many 

criterions for learning the consequent parameters have been 

developed. The classical learning criterions include the least 

squares [9, 10] and its extensions, the maximum interval 

method [11] and so on. 

Like most supervised machine learning models, TSK fuzzy 

systems require sufficient training data. However, in many real-

world applications, training samples are often limited whereas 

the dimensionality of the consequent parameters is high, thus 

leading to overfitting problems. By multitask learning, the 

learning performance of individual tasks can be improved by 

utilizing the joint information obtained from the related tasks 

[12-17]. The tasks are assumed to be similar so that the learning 

of one task can be benefitted from the learning of the others. 

That is to say, multitask learning learns the shared information 

of multiple tasks, which can be applied to different but related 

tasks to improve the generalization ability of each task. 

In multitask learning setting, multitask modeling methods 

have been developed for TSK fuzzy systems. For example, 

Jiang et al. proposed a multitask TSK fuzzy system by 

considering the inter-task relation in a shared hidden subspace 

[18]. This model however always produces highly complex 

fuzzy model with a large number of consequent parameters. To 

obtain an accurate and concise fuzzy model, Wang et al. 

proposed the mtSparseTSK model which jointly learned a 

compact set of fuzzy rules and consequent parameters through 
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a unified procedure by group sparse learning [19]. 

Nevertheless, mtSparseTSK only considers the shared 

consequent parameters of the tasks and ignores the task-shared 

and task-specific characteristics of the consequent parameters 

and the intrinsic relations (e.g. feature-feature relation). 

In multitask fuzzy modeling, the discriminant information 

may lie in a low-rank subspace spanning across the consequent 

parameters of the multiple fuzzy models. In this space, multiple 

fuzzy models can be correlated by the common information of 

the consequent parameters of different rules of the multiple 

tasks. This is essentially a low-rank structure. In addition, there 

may be significant difference between individual learning tasks 

that would result in sparse discriminative consequent 

parameters for each task. Therefore, identifying the low-rank 

structure and the sparse consequent parameters are critical in 

multitask fuzzy modeling. To this end, by assuming that the 

multiple tasks share a low-rank structure and that each task has 

discriminative sparse consequent parameters, we propose a 

novel manifold-regularized multitask modeling method called 

LR-S-mtTSK. Specifically, we decompose the consequent 

parameters into two components – the low-rank structure 

shared by multiple tasks and the task-specific structure that 

encodes the sparse characteristics of the individual tasks. This 

can be implemented by imposing low-rank constraints on the 

shared structure of the multiple tasks; and by applying the 

sparse constraints on the task-specific component to retain the 

specific information of each task. To enhance the performance 

of multitask learning, we further devise a new manifold 

regularization method to reflect the feature-feature relation. 

That is, if a pair of original features are related to each other, 

the same or similar relation is expected to be preserved between 

the corresponding consequent parameters within each rule. We 

formulate a novel learning criterion and further optimize it by 

proposing the efficient Augmented Lagrange Multiplier (ALM) 

procedure. 

The rest of the paper is organized as follows: Section 2 

introduces the fundamentals of multitask TSK fuzzy model. 

Section 3 presents a novel modeling method of multitask fuzzy 

system. Section 4 presents the optimization method of the 

proposed model. Section 5 presents the experiments and gives 

a comparative analysis of the results. Section 6 draws the 

conclusions. 

II.  OVERVIEW OF MULTITASK TSK FUZZY SYSTEMS 

Classical single-task TSK fuzzy system utilizes a collection 

of local linear submodels to approximate a nonlinear model. 

Multitask fuzzy system is a combination of multiple single-task 

TSK fuzzy models. In multitask settings, we use 𝐱𝑡 = (𝑥𝑡
1, 𝑥𝑡

2,·

··, 𝑥𝑡
𝐷)′ ∈ ℝ𝐷 to denote a feature vector in the 𝑡-th task, 𝑡 = 1,·

··, 𝑇, where 𝑥𝑡
𝑑 , 𝑑 = 1, ⋯ , 𝐷, is the 𝑑-th variable of 𝐱𝑡; 𝑇, 𝑁𝑡 

and 𝐷  denote the number of tasks, samples and features 

respectively.  

The 𝑚-th fuzzy rule of the 𝑡-th task can be written as follows:  

𝑚 = 1,···, 𝑀, 𝑡 = 1,···, 𝑇  

where 𝑨𝒕
𝑚,𝑑

 denotes the a fuzzy subset of input variable 𝑥𝑡
𝑑 for 

𝑚-th rule in the 𝑡-th task, 𝑚 = 1,···, 𝑀, 𝑑 = 1,···, 𝐷; 𝑀 is the 

number of fuzzy rules and ∧ denotes the conjunction operation. 

In this paper, we use the Gaussian function in Eq. (2) as 

membership function, 

𝜇
𝐴𝑡

𝑚,𝑑(𝑥𝑡
𝑑) = exp (−

(𝑥𝑡
𝑑 − 𝑐𝑚,𝑑)

2

2𝜎𝑚,𝑑
) (2) 

where 𝑐𝑑
𝑚 and 𝜎𝑑

𝑚 denote the mean and variance of the features 

that are shared by multiple tasks. They can be computed as 

follows: 

where 𝜇𝑡,𝑖
𝑚  is the fuzzy membership of the 𝑖-th sample in the 𝑡-

th task for the 𝑚-th cluster, and ℎ is an adjustable parameter. 

The output of the 𝑡-th task is given as follows: 

where  𝑙𝑚(𝐱𝑡) =  𝑤𝑡
𝑚,0 + 𝑤𝑡

𝑚,1𝑥𝑡
1 + 𝑤𝑡

𝑚,2𝑥𝑡
2 +··· +𝑤𝑡

𝑚,𝐷𝑥𝑡
𝐷 

denotes the consequence of the  𝑚-th fuzzy rule in the 𝑡-th task, 

and 𝐰𝑡
𝑚 = (𝑤𝑡

𝑚,0, 𝑤𝑡
𝑚,1,···, 𝑤𝑡

𝑚,𝐷)
′

 is the consequent 

parameters of the 𝑚-th fuzzy rule of the 𝑡-th task;  𝜑𝑚(𝐱𝑡) 

denotes the firing strength of the  𝑡-th fuzzy rule which can be 

expressed as: 

Let {𝐱𝑡,𝑖 , 𝑦𝑡,𝑖} be the 𝑖-th sample and the corresponding label in 

the 𝑡-th task, 𝐱𝑡,𝑖 = (𝑥𝑡,𝑖
1 , 𝑥𝑡,𝑖

2 ,···, 𝑥𝑡,𝑖
𝐷 )′ ∈ ℝ𝐷  , 𝑖 = 1, ⋯ , 𝑁𝑡 , 𝑡 =

1, ⋯ , 𝑇 , 𝐗𝑡 = (

𝐱𝑡,1′

⋮
𝐱𝑡,𝑁𝑡

′
) ∈ ℝ𝑁𝑡×𝐷 , 𝐲𝑡 = (𝑦𝑡,1, 𝑦𝑡,2,···, 𝑦𝑡,𝑁𝑡

)′ ∈

ℝ𝑁𝑡 . The output of the fuzzy model is thus given by: 

where  

is the 𝑚-th dictionary of the fuzzy model in the 𝑡-th task, 1 is 

an all-1 vector, and 𝐰𝑡
𝑚 is a vector containing the consequent 

parameters for the 𝑚-th rule in the 𝑡-th task. The modeling of 

multitask TSK fuzzy systems can be formulated as  

 

𝐈𝐅 𝑥𝑡
1 𝐢𝐬 𝑨𝒕

𝑚,1 ∧ 𝑥𝑡
2 𝐢𝐬 𝑨𝒕

𝑚,2 ∧ … ∧ 𝑥𝑡
𝐷 𝐢𝐬 𝑨𝒕

𝑚,𝐷 , 
𝐓𝐇𝐄𝐍 

𝑓𝑡
𝑚( 𝐱𝑡) =  𝑤𝑡

𝑚,0 + 𝑤𝑡
𝑚,1𝑥𝑡

1 + 𝑤𝑡
𝑚,2𝑥𝑡

2 +··· +𝑤𝑡
𝑚,𝐷𝑥𝑡

𝐷 

(1) 

𝑐𝑚,𝑑 = ∑ ∑ 𝜇𝑡,𝑖
𝑚 𝑥𝑡,𝑖

𝑑

𝑁𝑡

𝑖=1

𝑇

𝑡=1

/ ∑ ∑ 𝜇𝑡,𝑖
𝑚

𝑁𝑡

𝑖=1

𝑇

𝑡=1

 (3) 

𝜎𝑚,𝑑 = ℎ ∑ ∑ 𝜇𝑡,𝑖
𝑚 (𝑥𝑡,𝑖

𝑑 − 𝑐𝑚,𝑑)

𝑁𝑡

𝑖=1

𝑇

𝑡=1

/ ∑ ∑ 𝜇𝑡,𝑖
𝑚

𝑁𝑡

𝑖=1

𝑇

𝑡=1

 (4) 

𝐲̂𝑡 = ∑ 𝜑𝑚(𝐱𝑡)𝑙𝑚(𝐱𝑡)

𝑀

𝑚=1

 (5) 

𝜑𝑚(𝐱𝑡) =
𝜇𝑚( 𝐱𝑡)

∑ 𝜇𝑘( 𝐱𝑡)𝑀
𝑘=1

， 

𝜇𝑚(𝐱𝑡) = ∏ 𝜇
𝐴𝑡

𝑚,𝑑(𝑥𝑡
𝑑)

𝐷

𝑑=1

 

(6) 

𝐲𝑡̂ = ∑ 𝚽𝑡
𝑚𝐰𝑡

𝑚

𝑀

𝑚=1

 (7) 

𝚽𝑡
𝑚 = 𝑑𝑖𝑎𝑔 (𝜑𝑚(𝐱𝑡,1),···, 𝜑𝑚(𝐱𝑡,𝑁𝑡

)) (𝟏, 𝐗𝑡) ∈ ℝ𝑁𝑡×(𝐷+1) (8) 

𝐲𝑡̂ = 𝚽𝑡𝐰𝑡, (9) 
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where 𝚽𝑡 ∈ ℝ𝑁𝑡×(𝐷+1)𝑀 is the dictionary of the fuzzy model in 

the 𝑡-th task and 𝚽𝑡
𝑚 is the subdictionary of the 𝑚-th rule, 𝑚 =

1, ⋯ , 𝑀 . We use 𝐰𝑡 = ((𝐰𝑡
1)′, (𝐰𝑡

2)′,···, (𝐰𝑡
𝑀)′)′ ∈ ℝ(𝐷+1)𝑀 

to denote a vector containing all the consequent parameters for 

the 𝑡-th task. For convenience, we define 𝐖𝑚 = (𝐰1
𝑚, 𝐰2

𝑚,···

, 𝐰𝑇
𝑚) ∈ ℝ(𝐷+1)×𝑇 which contains the consequent parameters in 

the 𝑚 -th rules across all tasks. We further define 𝐖 =

(𝐰1, 𝐰2,···, 𝐰𝑇) = (

𝐖1

𝐖2

⋮
𝐖𝑀

) ∈ ℝ(𝐷+1)𝑀×𝑇 which contains all the 

consequent parameters of the multiple tasks. 

A. Manifold-regularized multitask fuzzy systems 

To learn the consequent parameters of the proposed model, 

we map the training data into 𝑀 high dimensional feature space 

using Eq. (9)-(11). The original problem is therefore transferred 

into a linear regression problem. Fig. 1 shows the mapping 

procedure, which is equivalent to a feedforward neural network 

structure. 

The general learning criterion of manifold-regularized 

multitask fuzzy system is formulated as follows: 

where the first term ∑ 𝐿(𝐲𝒕, 𝚽𝑡𝐰𝑡)𝑇
𝑡=1  is a global loss function 

that considers the difference between the predicted labels and 

their ground truth in each task; the second term 𝑅(𝐖) handles 

the inter-correlation between multiple tasks in the local model; 

𝛼 is the trade-off parameter of the regularization term. 

Let 𝑁 = ∑ 𝑁𝑡
𝑇
𝑡=1 . We define 𝐗 = (

𝐗1

⋮
𝐗𝑇

) ∈ ℝ𝑁×𝐷  that 

contains all the input samples in multiple tasks; 𝚽𝑚 =

(
𝚽1

𝑚

⋮
𝚽𝑇

𝑚
) ∈ ℝ𝑁×(𝐷+1) , where 𝚽𝑡

𝑚  is computed with Eq. (8). 

(𝚽𝑚)𝑖  and (𝚽𝑚)𝑗  denote two column vectors??? that are 

generated from the 𝑖-th and 𝑗-th features in 𝐗. If the 𝑖-th and 𝑗-

th features of 𝐗 are related to each other, their corresponding 

consequent parameters in the fuzzy rules should also be related. 

Therefore, the 𝑖 -th and 𝑗 -th rows in 𝐖𝑚 , i.e. (𝐖𝑚)𝑖  and 

(𝐖𝑚)𝑗, should have the same or similar relations with those 

between (𝚽𝑚)𝑖  and (𝚽𝑚)𝑗  (the blue area in Fig. 2). To 

formulate this intrinsic geometric distribution, we define  

where 𝑔𝑖𝑗 is the element of the similarity matrix 𝐆𝑚 =  [𝑔𝑖𝑗
𝑚]  ∈

ℝ(𝐷+1)×(𝐷+1) that encodes the relation between two columns in 

𝚽𝑚 . To compute the similarity between two features in the 

mapped data, we use the Gaussian kernel function as the 

similarity measure, i.e.,  

where 𝜎 is the kernel width, (𝚽𝑚)𝑖 and (𝚽𝑚)𝑗 are the 𝑖-th and 

𝑗-th column in 𝚽𝑚. To construct the similarity matrix 𝐆𝑚, we 

regard the features as the nodes of an adjacency graph, in which 

the edge weights denote the similarity of the columns in 𝚽𝑚. 

The construction of the adjacency graph follows the criteria 

below. If node  𝑗 is one of the 𝐾 nearest neighbors of node 𝑖, 
𝑔𝑖𝑗

𝑚 can be derived from Eq. (13). Otherwise, 𝑔𝑖𝑗
𝑚 is set to zero. 

The manifold regularization term for feature-feature relation 

can be formulated as follows: 

where (𝐋𝐆)𝑚 = (𝐋𝐇)𝑚 − 𝐆𝑚 , (𝐋𝐇)𝑚  is a diagonal matrix 

whose diagonal elements are the column-wise sum of the 

similarity matrices 𝐆𝑚 , i.e., (𝐆𝑚)𝑖𝑖 = ∑ 𝑔𝑖𝑗
𝐷+1
𝑗=1 . The 

minimization of Eq. (14) can be explained with the mechanism 

that the greater the similarity between (𝚽𝑚)𝑖 and (𝚽𝑚)𝑗, the 

smaller the difference between (𝐖𝑚)𝑖 and (𝐖𝑚)𝑗. 

The learning criterion of the manifold-regularized multitask 

fuzzy system is therefore formulated as follows: 

The first term in Eq. (15) corresponds to supervised learning 

𝚽𝑡 = (𝚽𝑡
1, 𝚽𝑡

2,···, 𝚽𝑡
𝑀) (10) 

𝐰𝑡 = ((𝐰t
1)′, (𝐰𝑡

2)′,···, (𝐰𝑡
𝑀)′)′ (11) 

min
𝑊

∑ 𝐿(𝐲𝒕, 𝚽𝑡𝐰𝑡)𝑇
𝑡=1 + 𝛼 ∙ 𝑅(𝐖)   

𝑅𝑚(𝐖𝑚) =
1

2
∑ 𝑔𝑖𝑗‖(𝐖𝑚)𝑖 − (𝐖𝑚)𝑗‖

2
 𝐷+1

𝑖,𝑗=1 , (12) 

𝑔𝑖𝑗
𝑚 = 𝑒𝑥𝑝 (−

‖(𝚽𝑚)𝑖−(𝚽𝑚)𝑗‖
2

2

2𝜎2 )  (13) 

𝑅(𝐖) = ∑ 𝑅𝑚(𝐖𝑚)

𝑀

𝑚=1

 

=
1

2
∑ ∑ 𝑔𝑖𝑗

𝑚((𝐖𝑚)𝑖 − (𝐖𝑚)𝑗)
2

 

𝐷+1

𝑖,𝑗

𝑀

𝑚=1

 

= ∑ 𝑡𝑟((𝐖𝑚)′(𝐋𝐆)𝑚(𝐖𝑚))

𝑀

𝑚=1

 

= ∑ ∑ (𝐰𝑡
𝑚)′(𝐋𝐆)𝑚𝐰𝑡

𝑚

𝑀

𝑚=1

𝑇

𝑡=1

 

(14) 

min
𝑊

∑ ‖𝐲𝒕 − ∑ 𝚽𝑡
𝑚𝐰𝑡

𝑚

𝑀

𝑚=1

‖

2

2𝑇

𝑡=1

+ 𝛼 ∑ ∑ (𝐰𝑡
𝑚)′(𝐋𝐆)𝑚𝐰𝑡

𝑚

𝑀

𝑚=1

𝑇

𝑡=1

 (15) 

The antecedent net

𝑥𝐷 

𝑥1 

1 

The consequent net
The first layer The second layer The third layer

The first 
layer

The second 
layer

The third 
layer

𝜇1
1 

𝜇1
𝑚 

𝜇𝐷
1  

𝜇𝐷
𝑚 

𝜑1 

𝜑𝑚 

𝑦 

 
Fig. 1 The antecedent and consequent network of fuzzy system. In the 

antecedent network, the first layer is the input layer whose nodes are directly 
connected to the components of the input vector. The second layer contains 

the membership of each component of the input to the 𝑚-th cluster. Each node 

in the third layer represents a fuzzy rule, which is used to match the 

antecedents of the fuzzy rules and calculate the applicability of each rule.  
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that involves labeled data. The second term is the manifold 

regularization term that corresponds to unsupervised learning 

on the intrinsic geometric distribution of all tasks. 

B. Manifold-regularized multitask fuzzy systems with low-

rank structure and sparse constraints 

In multitask learning setting, different tasks share a common 

structure while the original data of the individual tasks have its 

own characteristics that are different from other tasks. We 

therefore decompose the joint matrix 𝐖 into two components, 

i.e. 𝐖 = 𝐕 + 𝐄 , where 𝐕  is the task-shared component, 

representing  that the consequent parameters over multiple tasks 

have similar structures; 𝐄 is the task-specific component which 

represents the specific characteristics of the tasks [20]. If the 

tasks are closely related, the task-shared component is dominant 

in multitask learning and the task-specific component tends to 

zero. On the contrary, the task-shared component tends to zero. 

This yields the following optimization problem: 

where 𝛽 and 𝜆 are regularization coefficients. Obviously, it is 

difficult to solve 𝑟𝑎𝑛𝑘(𝐕), We therefore express it in nuclear 

norm [21] so that Eq. (16) becomes equivalent to: 

Finally, we define the multitask learning objective function 

as follows: 

III. OPTIMIZATION  

The optimization problem in Eq. (18) can be solved using 

ALM [22] which is defined as follows: 

where 𝐘 ∈ ℝ(𝐷+1)×𝑇 is a Lagrange multiplier matrix, and 𝜇 >
0 is a penalty parameter; 〈∙,∙〉 denotes the inner product of two 

matrices. By using the LADMAP [23] method, Eq. (19) can be 

rewritten as, 

Eq. (20) involves four matrices 𝐖, 𝐕, 𝐄 and 𝐘 that makes it 

difficult to update them simultaneously. Alternatively, we 

optimize each matrix in turn while fixing the others. Hence, the 

function can be solved iteratively as follows: 

(1) Fixing 𝐕 , 𝐄  and 𝐘 , the sub-problem w.r.t. 𝐖  can be 

written as follows: 

min
𝐕,𝐄

(𝛽 ∙ 𝑟𝑎𝑛𝑘(𝐕) + 𝜆 ∙ ‖𝐄‖1) 

s. t. 𝐖 = 𝐕 + 𝐄 
(16) 

min
𝐕,𝐄

(𝛽 ∙ ‖𝐕‖∗ + 𝜆 ∙ ‖𝐄‖1) 

s. t. 𝐖 = 𝐕 + 𝐄 
(17) 

min
𝐖

∑ ‖𝐲𝒕 − ∑ 𝚽𝑡
𝑚𝐰𝑡

𝑚

𝑀

𝑚=1

‖

2

2𝑇

𝑡=1

 

+  𝛼 ∑ ∑ (𝐰𝑡
𝑚)′(𝐋𝐆)𝑚𝐰𝑡

𝑚

𝑀

𝑚=1

𝑇

𝑡=1

 

+  𝛽‖𝐕‖∗ + 𝜆‖𝐄‖1 

s. t. 𝐖 = 𝐕 + 𝐄 

(18) 

min
𝐖,𝐕,𝐄,𝐘

∑ ‖𝐲𝒕 − ∑ 𝚽𝑡
𝑚𝐰𝑡

𝑚

𝑀

𝑚=1

‖

2

2𝑇

𝑡=1

 

+ 𝛼 ∑ ∑ (𝐰𝑡
𝑚)′(𝐋𝐆)𝑚𝐰𝑡

𝑚

𝑀

𝑚=1

𝑇

𝑡=1

+ 𝛽‖𝐕‖∗ + 𝜆‖𝐄‖1  
+  〈𝐘, 𝐖 − 𝐕 − 𝐄〉

+
𝜇

2
‖𝐖 − 𝐕 − 𝐄‖2

2 

(19) 

min
𝐖,𝐕,𝐄,𝐘

∑ ‖𝐲𝒕 − ∑ 𝚽𝑡
𝑚𝐰𝑡

𝑚

𝑀

𝑚=1

‖

2

2𝑇

𝑡=1

+ 𝛼 ∑ ∑ (𝐰𝑡
𝑚)′(𝐋𝐆)𝑚𝐰𝑡

𝑚

𝑀

𝑚=1

𝑇

𝑡=1

+ 𝛽‖𝐕‖∗ + 𝜆‖𝐄‖1 

+
𝜇

2
‖𝐖 − 𝐕 − 𝐄 +

𝐘

𝜇
‖

2

2

 

s. t. 𝐖 = 𝐕 + 𝐄 

(20) 

...

(𝚽𝑚 )𝑖 

(𝐖𝑚 )𝑗  

...

    

𝚽1
𝑚 

𝚽𝑇
𝑚 

𝐰1
𝑚 

𝐰𝑇
𝑚 

  

    

𝐰1
𝑚 𝐰𝑇

𝑚 𝐰2
𝑚 𝐰𝑡

𝑚 

(𝚽𝑚 )𝑗  

𝐖𝑚  

(𝐖𝑚 )𝑖 

𝚽𝑚  

...

...

    

𝐗1 

𝐗𝑇  

𝜑𝑚 (𝐱1,1) 

𝜑𝑚  

𝜑𝑚  

𝜑𝑚 (𝐱1,1)𝐱1,1 

  

𝜑𝑚 (𝐱1,2) 𝜑𝑚 (𝐱1,2)𝐱1,2 

𝜑𝑚 (𝐱1,𝑁1
) 𝜑𝑚 (𝐱1,𝑁1

)𝐱1,𝑁1
 

𝜑𝑚 (𝐱𝑇,1) 𝜑𝑚 (𝐱𝑇,1)𝐱𝑇,1 

𝜑𝑚 (𝐱𝑇,2) 𝜑𝑚 (𝐱𝑇,2)𝐱𝑇,2 

𝜑𝑚 (𝐱𝑇,𝑁𝑇
) 𝜑𝑚 (𝐱𝑇,𝑁𝑇

)𝐱𝑇,𝑁𝑇
 

𝑖-th feature 𝑗-th feature 

𝐱𝑇,𝑁𝑇
 

𝐱𝑇,2 

𝐱𝑇,1 

𝐱1,𝑁1
 

𝐱1,2 

𝐱1,1 

𝐗 
Fig. 2 Mapping the multitask data 𝐗 into the (𝐷 + 1)-dimensional feature space by the fuzzy mapping corresponding to the 𝑚 -th rule. The blue dotted 

rectangles denote the ‘feature-feature’ relationship, which yields the manifold regularization in the learning criterion. 
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where 𝐰𝑡
𝑚 is a vector of the regression parameters for the 𝑚-th 

fuzzy rule of the 𝑡 -th task and  𝐰𝑡 = ((𝐰𝑡
1)′, (𝐰𝑡

2)′,···
, (𝐰𝑡

𝑀)′)′ ∈ ℝ(𝐷+1)𝑀 . Since the column vectors 𝐰𝑡  are 

independent of each other, we can solve 𝐖 by solving each 𝐰𝑡 

in turn. By setting the derivative of the objective function in Eq. 

(20) with respect to 𝐰𝑡
𝑚 to zero, we obtain: 

Setting 𝐀𝑡
𝑚 = 2𝛼(𝐋𝐆)𝑚 + 𝜇𝐈, 𝐁𝑡

𝑚 = 2(𝚽𝑡
𝑚)′, 𝐂𝑡

𝑚 =

2(𝚽𝑡
𝑚)′𝐲𝑡 + 𝜇 (𝐯𝑡

𝑚 + 𝐞𝑡
𝑚 −

𝐘𝑡
𝑚

𝜇
), Eq. (22) can be rewritten as 

follows: 

Hence, 𝐰𝑡 is given by 

where 𝐀𝑡 , 𝐁𝑡 and 𝐂𝑡 are block matrices which are constructed 

as follows: 

 

 

 

Finally, we get 𝐖 = (𝐰1, 𝐰2,···, 𝐰𝑇). 

 (2) Fixing 𝐖, 𝐄, 𝐘, the sub-problem w.r.t. 𝐕 can be written 

as follows: 

The above problem could be solved by  

where 𝒟 is a singular value thresholding operator [24]. 

(3) Fixing 𝐖, 𝐕, 𝐘, the sub-problem w.r.t. 𝐄 can be written 

as follows: 

The above problem could be solved by  

(4) Finally, we update the Lagrange multiplier matrix 𝐘 and 

the regularization parameter 𝜇 using the following equations: 

where 𝜌 is a positive scalar. 

The LR-S-mtTSK algorithm includes two main steps: 

generating the dictionary of the fuzzy rules and learning the 

consequent parameters. The time complexity of the first step is 

min
𝐖

∑ ‖𝐲𝑡 − ∑ 𝚽𝑡
𝑚𝐰𝑡

𝑚

𝑀

𝑚=1

‖

2

2𝑇

𝑡=1

+ 𝛼 ∑ ∑ (𝐰𝑡
𝑚)′(𝐋𝐆)𝑚𝐰𝑡

𝑚

𝑀

𝑚=1

𝑇

𝑡=1

+
𝜇

2
‖𝐖 − 𝐕 − 𝐄 +

𝐘

𝜇
‖

2

2

 

(21) 

−2(𝚽𝑡
𝑚)′ (𝐲𝐭 − ∑ 𝚽𝑡

𝑖𝐰𝑡
𝑖

𝑀

𝑖=1

) + 2𝛼(𝐋𝐆)𝑚𝐰𝑡
𝑚

+ 𝜇 (𝐰𝑡
𝑚 − 𝐯𝑡

𝑚 − 𝐞𝑡
𝑚 +

𝐘𝑡
𝑚

𝜇
)

= 𝟎 

(22) 

𝐀𝑡
𝑚𝐰𝑡

𝑚 + 𝐁𝑡
𝑚 ∑ 𝚽𝑡

𝑖𝐰𝑡
𝑖

𝑀

𝑖=1

= 𝐂𝑡
𝑚 (23) 

𝐰𝑡 = (𝐀𝑡 + 𝐁𝑡)−1𝐂𝑡 (24) 

𝐀𝑡 = [
𝐀𝑡

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐀𝑡

𝑀
]， 

𝐁𝑡 = [
𝐁𝑡

1𝚽𝑡
1 ⋯ 𝐁𝑡

1𝚽𝑡
𝑀

⋮ ⋱ ⋮
𝐁𝑡

𝑀𝚽𝑡
1 ⋯ 𝐁𝑡

𝑀𝚽𝑡
𝑀

]，𝐂𝑡 = [
𝐂𝑡

1

⋮
𝐂𝑡

𝑀
] 

 

(25) 

min
𝐕

 𝛽‖𝐕‖∗ +
𝜇

2
‖𝐖 − 𝐕 − 𝐄 +

𝐘

𝜇
‖

2

2

 (26) 

𝐕 =  𝒟𝛽
𝜇

(𝐖 − 𝐄 +
𝐘

𝜇
) (27) 

min
𝐄

 𝜆‖𝐄‖1 +
𝜇

2
‖𝐖 − 𝐕 − 𝐄 +

𝐘

𝜇
‖

2

2

 (28) 

𝐄 =  𝒮𝜆
𝜇

(𝐖 − 𝐕 +
𝐘

𝜇
) (29) 

𝐘 = 𝐘 + 𝜇(𝐖 − 𝐕 − 𝐄) (30) 

𝜇 = 𝜌𝜇 (31) 

Task 1

𝐖 𝐕 
Weight Matrix Low-Rank Component Sparse Component

𝐄 

Task 2 Task T

Rule 1

Rule 2

Rule M

Task 1 Task 2 Task T Task 1 Task 2 Task T

 
Fig. 3 In multitask learning, the joint matrix 𝐖 can be decomposed into two components: the low-rank matrix 𝐕 that represents the consequent parameters of 

multiple tasks have similar structures, and the matrix 𝐄 that denotes the task-specific component. 
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𝑂(𝐼𝑇𝑁𝑀𝐷) , where 𝐼 , 𝑇 , 𝑁 , 𝑀  and 𝐷  are the number of 

iterations, tasks, samples, clusters and features respectively. 

The time complexity of the second step is determined by ALM, 

whose time complexity is 𝑂(𝐼𝑇𝑀𝐷2) . The LR-S-mtTSK 

algorithm is described as follows. 

IV. EXPERIMENTS 

A. Experimental settings 

Experiments were conducted to evaluate the effectiveness of 

LR-S-mtTSK on both regression and classification tasks using 

nested 5-folded cross-validation. In the experiments, the whole 

dataset was partitioned into 5 subsets with equal size. Then, 

each of the subsets was selected in turn for testing while the 

remaining four are used training. In the training procedure for 

each fold, another round of cross-validation was performed to 

determine the optimal hyper-parameters. This process was 

repeated 5 times. 

For regression tasks, the Relative Root Square Error (RRSE) 

in Eq. (32) was used as the evaluation measure. 

where 𝑦𝑖̂ is prediction output of the model and 𝑦𝑖̅ is the mean of 

the actual labels. A model with smaller RRSE indicates that it 

has better generalization ability. For classification tasks, 

Accuracy (ACC), Sensitivity (SEN), Specificity (SPE) in Eq. 

(33)-(35), Area Under Curve (AUC) and Receiver Operating 

Characteristic (ROC) were used as the evaluation measures, 

where Accuracy, Sensitivity and Specificity are computed by 

true positive (TP), false positive (FP), true negative (TN), and 

false negative (FN). 

We compared the performance of LR-S-mtTSK with that of 

five regression models and seven classification models. The 

details of these models are presented in Table I. Table II shows 

the search grids adopted for setting the hyper-parameters in 

each method. Note that some of the models can be used for both 

regression and classification tasks. For single-task experiment, 

we run the single-task models on each task separately to test the 

performance. 

B. Regression  

1) Synthetic datasets 

We evaluated the regression performance of LR-S-mtTSK 

on two synthetic datasets to simulate the real-world multitask 

learning scenes. Each synthetic data set was generated by three 

functions, which were considered as three similar tasks. The 

first dataset SIDF (same input different function) was generated 

by multiple functions with the same input data. To generate the 𝐽𝑅𝑅𝑆𝐸 = √∑ (𝑦𝑖̂ − 𝑦𝑖)2
𝑁

𝑖=1
∑ (𝑦𝑖̅ − 𝑦𝑖)2

𝑁

𝑖=1
⁄  (32) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁) (33) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = (𝑇𝑃)/(𝑇𝑃 + 𝐹𝑁) (34) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = (𝑇𝑁)/(𝐹𝑃 + 𝑇𝑁) (35) 

 

The LR-S-mtTSK algorithm 

Input: Multitask training sets 𝐗1,···, 𝐗𝑇  and the 

corresponding labels 𝐲1,···, 𝐲𝑇   fuzzy rule number 𝑀   

regularization parameters ℎ,  𝛼, 𝛽 , 𝜆 , 𝜇  positive scalar 

𝜌 > 1  

Training process 

1. Generate fuzzy dictionary:  

(i) use FCM to cluster the samples of all tasks and 

obtain 𝑀 cluster centers.  

(ii) compute the fuzzy membership of each sample 

using the Gaussian function in Eq. (2) and 

generate the dictionary of the TSK fuzzy system 

for each task. 

2. Jointly learn the consequent parameters of the rules 

across multiple tasks: Optimize 𝐖   𝐕  and 𝐄  by 

solving the optimization problem in Eq. (18). 

2.1. Initialization: Set 𝐖  to random matrices, set 

𝐕 = 𝐖  and 𝐄 = 𝐖 − 𝐕   Lagrange multiplier 

matrix 𝐘 =  
𝐖

‖𝐖‖𝟐
. 

2.2. while Eq. (20) not converged do 

 Updating 𝐖 using Eq. (24)  

 Updating 𝐕 using Eq. (27)  

 Updating 𝐄 using Eq. (29)  

 Updating 𝐘 using Eq. (30)  

 Updating 𝜇 using Eq. (31)  

 end while 

2.3. Get the optimal consequent parameters W 

3. Generate fuzzy rules: Generate fuzzy rules for each 

task based on the dictionary and the optimized 

consequent parameters. 

Output: Multitask fuzzy system LR-S-MTTSFS 

 

TABLE I 

METHODS UNDER COMPARISON  
Methods Description Task type 

LR-S-mtTSK 
The proposed LR-S-mtTSK 

method. 

Regression/ 

Classification 

MT-TSK-FS 

Multi-task TSK fuzzy system 

using inter-task correlation 

information [18]. 

Regression/ 

Classification 

Least_L21 

Least squares multitask learning 
method with the L_21 norm 

regularization (Least_L21 

implementation in the MALSAR 
package [26]). 

Regression/ 
Classification 

L2-TSFS 

L2-norm penalty-based 

insensitive TSK fuzzy model 
[27]. 

Regression/ 

Classification 

TSFS-SVR-L 

TS-fuzzy-system-based support 

vector regression; linear kernel 

was adopted in SVR [28]. 

Regression 

TSFS-SVR-G 

TS-fuzzy-system-based support 

vector regression; Gaussian 

kernel was adopted in SVR [28]. 

Regression 

TSFS-SVM-L 

TS-fuzzy-system-based support 

vector machine; linear kernel was 

adopted. 

Classification 

TSFS-SVM-G 
TS-fuzzy-system-based support 
vector machine; Gaussian kernel 

was adopted. 

Classification 

SVM-L 

Classical single-task support 

vector machine classifier; linear 

kernel was adoptedError! 
Reference source not found.. 

Classification 

SVM-G 

Classical single-task support 

vector machine classifier; linear 
kernel was adopted. 

Classification 
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dataset, we first generated a group of samples, and then fed the 

samples into different functions to obtain multiple outputs. It is 

essentially a multiple input and multiple output (MIMO) 

system. The second dataset DIDF (different input different 

function) was generated by multiple functions with different 

input data. To produce the DIDF dataset, we generated three 

groups of samples, each corresponding to a function. After that, 

we fed (𝑥1, ⋯ , 𝑥5) of each sample into the function specific to 

the group to obtain a multitask dataset containing several multi-

input single-output learning tasks. Notice that 𝑥𝑖 (𝑖 = 1, ⋯ ,5) 

followed uniform distribution and 𝜎  followed normal 

distribution. Table III gives the details of the synthetic datasets 

in our experiments. 

2) Real-world datasets 

We further evaluated the performance of LR-S-mtTSK on 

four real-world datasets. Details of the datasets are given as 

follows: 

(i) The Glutamic Acid Fermentation Process dataset was 

generated from an MIMO system. The input variables included 

fermentation time ℎ , glucose concentration 𝑆(ℎ) , thalli 

concentration 𝑋(ℎ), glutamic acid concentration 𝑃(ℎ), stirring 

speed 𝑅(ℎ), and ventilation 𝑄(ℎ), in which ℎ = 0,2, … ,28 was 

the time point. The output variables included glucose 

concentration S(h+2), thalli concentration 𝑋(ℎ + 2) , and 

glutamic acid concentration 𝑃(ℎ + 2)  at a future time point 

ℎ + 2. Each output variable was regarded as a task. 

(ii) The Slump dataset was used to predict concrete slump 

flow. It included 103 samples with 7 input variables. Slump 

flow was dependent on variables including cement, slag, fly ash 

and so on. Each output variable was regarded as a task. 

(iii) The Communities and Crime dataset, used to predict Per 

Capita Violent Crimes, was obtained from UCI Machine 

Learning Repository. Each sample was a community subject 

with many features related to crime, such as the percentage of 

urban population, median household income, the number of 

police per capita and so on. We considered the regression for 

each county as a task. Five counties with similar size were 

selected for multitask learning. 

(iv) The Housing dataset was drawn from the Boston 

Standard Metropolitan Statistical Area (SMSA) and included 

505 samples. Each sample in the dataset described the profile 

of a Boston suburb or town. Each sample had 13 feature 

variables. The dataset was divided into three groups by different 

intervals of variable “RAD” and the regression on each group 

was considered as a learning task. 

 

3) Results of comparison 

The comparative results of the LR-S-mtTSK and the other 

methods on synthetic and real-world datasets are shown in 

Table IV and Table V, from which the following conclusions 

can be drawn. First, when an appropriate algorithms is used, 

accurate regression model can be trained effectively under the 

framework of multitask learning. This implies that integrating 

inter-task relation into the multitask model can improve the 

generalization performance. On both synthetic and real-world 

datasets, the performance of multitask models is significantly 

better than that of the other single-task methods in most cases. 

Second, the better performance of the multitask models on the 

Slump dataset and the Communities and Crime dataset 

indicates that reasonably dividing single-task datasets into multi 

task datasets is helpful to achieve better prediction results. 

Third, LR-S-MTTSFS showed better average performance than 

the other methods, verifying that the integration of low-rank 

structure and sparse constrains into multitask fuzzy modeling is 

an effective approach.

TABLE II 

SEARCH GRIDS  OF HYPER-PARAMETERS 

 
Methods Search grids of hyper-parameters 

LR-S-mtTSK 

Rule number 𝑀 ∈ {1,2,··· ,10 }; regularization 

parameters: 𝛼 ∈ {10−4, 10−3,···, 103 }, 𝛽 ∈
{10−4, 10−3,···, 103 }, 𝜆 ∈ {10−4, 10−3,···, 103 }, 
𝜇 ∈ {10−4, 10−3,···, 104 }. 

LR-S-mtTSK (𝛼=0) 

Rule number 𝑀 ∈ {1,2,··· ,10 }; regularization 

parameters: 𝛽 ∈ {10−4, 10−3,···, 103 }, 𝜆 ∈
{10−4, 10−3,···, 103 }, 𝜇 ∈ {10−4, 10−3,···, 104 }. 

LR-S-mtTSK (𝛽=0) 

Rule number 𝑀 ∈ {1,2,··· ,10 }; regularization 

parameters: 𝛼 ∈ {10−4, 10−3,···, 103 }, 𝜆 ∈
{10−4, 10−3,···, 103 }, 𝜇 ∈ {10−4, 10−3,···, 104 }. 

LR-S-mtTSK (𝜆=0) 

Rule number  𝑀 ∈ {1,2,··· ,10 }; regularization 

parameters: 𝛼 ∈ {10−4, 10−3,···, 103 }, 𝛽 ∈
{10−4, 10−3,···, 103 }, 𝜇 ∈ {10−4, 10−3,···, 104 }. 

MT-TSK-FS 

Rule number  𝑀 ∈ {5,10,··· ,100 }; 

𝜏𝑘 ∈ {2−4, 2−3,···, 25 }; 

𝜆 ∈ {10−4, 10−3,···, 105 }. 

Least_L21 
𝛾 ∈ {10−5, 10−4,···, 105 }; 
𝜆 ∈ {10−4, 10−3,···, 105 }. 

L2-TSFS 

Rule number 𝑀 ∈ {5,10,··· ,100 }; 

𝜏 ∈ {2−4, 2−3,···, 25 }; 

𝑟 ∈ {10−4, 10−3,···, 105 }. 

TSFS-SVR-L 

Rule number 𝑀 ∈ {5,10,··· ,100 }; 

𝐶 ∈ {10−5, 10−4,···, 103 }; 

𝑟 ∈ {10−5, 10−4,···, 103 }. 

TSFS-SVR-G 

Rule number 𝑀 ∈ {5,10,··· ,100 }; 

𝐶 ∈ {10−5, 10−4,···, 103 }; 

𝑟 ∈ {10−5, 10−4,···, 103 }; 

TSFS-SVM-L 

Rule number: 𝑀 ∈ {5,10,··· ,100 }; 
𝐶 ∈ {10−5, 10−4,···, 105 }; 

𝑟 ∈ {10−5, 10−4,···, 105 }; 

TSFS-SVM-G 

Rule number: 𝑀 ∈ {5,10,··· ,100 }; 
Gaussian kernel bandwidth 𝜎2 ∈ {10−3, 10−4,···
, 103 }; 
𝐶 ∈ {10−5, 10−4,···, 105 }; 

𝑟 ∈ {10−5, 10−4,···, 105 }; 

SVM-L 
𝛾 ∈ {10−5, 10−4,···, 105 }; 
𝐶 ∈ {10−4, 10−3,···, 105 }; 

SVM-G 

Gaussian kernel bandwidth 𝜎2 ∈ {10−3, 10−4,···
, 103 }; 
𝛾 ∈ {10−5, 10−4,···, 105 }; 
𝐶 ∈ {10−4, 10−3,···, 105 }; 
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TABLE III 

THREE-TASK SYNTHETIC DATASETS CREATED FOR REGRESSION EXPERIMENTS 
 

Scenes Tasks Functions 

Inputs 

𝜎 Size of data set 𝑥1,𝑥2,𝑥3,

𝑥5 
𝑥4 

SIDF 

Task 1 
𝑓1(𝐱) = 15𝑥1 cos(𝜋𝑥2) + 10𝑥3(𝑥4 − 1)2 + 5𝑥5

+ 𝜎 

[-1,1] [-3,3] [-1,1] 

50 

Task 2 
𝑓2(𝐱) = 5𝑥1 cos(𝜋𝑥2) + 15𝑥3(𝑥4 − 2)2 + 10𝑥5

+ 𝜎 
50 

Task 3 
𝑓3(𝐱) = 10𝑥1 cos(𝜋𝑥2) + 5𝑥3(𝑥4 − 3)2 + 15𝑥5

+ 𝜎 
50 

DIDF 

Task 1 
𝑓1(𝐱) = 15𝑥1 cos(𝜋𝑥2) + 10𝑥3(𝑥4 − 1)2 + 5𝑥5

+ 𝜎 
[-1,1] [-3,3] [-1.1] 50 

Task 2 
𝑓2(𝐱) = 5𝑥1 cos(𝜋𝑥2) + 15𝑥3(𝑥4 − 2)2 + 10𝑥5

+ 𝜎 
[-1,1] [-3,3] [-1,1] 50 

Task 3 
𝑓3(𝐱) = 10𝑥1 cos(𝜋𝑥2) + 5𝑥3(𝑥4 − 3)2 + 15𝑥5

+ 𝜎 
[-1,1] [-3,3] [-1,1] 50 

 

TABLE Ⅳ 
REGRESSION PERFORMANCE ON SYNTHETIC MULTITASK DATASETS IN TERMS OF RRSE 

 

Datasets 
Methods 

Task 
LR-S-mtTSK 

LR-S-mtTSK 

(𝛼=0) 

LR-S-mtTSK 

(𝛽=0) 

LR-S-mtTSK 

(𝜆=0) 
MT-TSK-FS Least_L21 L2-TSFS TSFS-SVR-L TSFS-SVR-G 

SIDF 

Task 1 
0.5085 
±0.0795 

0 4678 

±0 0962 
0.5893 
±0.1386 

0.6150 
±0.1390 

0.5174 
±0.1541 

1.0448 
±0.0445 

0.7963 
±0.0397 

0.4894 
±0.0568 

0.6204 
±0.0767 

Task 2 
0 4307 

±0 0845 

0.4780 

±0.0853 

0.5155 

±0.1098 

0.5617 

±0.1645 

0.5331 

±0.0958 

0.9953 

±0.0446 

0.8085 

±0.0411 

0.4968 

±0.0855 

0.4596 

±0.0724 

Task 3 
0 4218 

±0 0809 

0.4529 

±0.0600 

0.6089 

±0.1404 

0.5554 

±0.1148 

0.4294 

±0.0673 

0.7812 

±0.0446 

0.6784 

±0.0353 

0.4731 

±0.0467 

0.4394 

±0.0474 

Average 
0 4506 

±0 0681 

0.4719 

±0.0630 

0.5506 

±0.0886 

0.5766 

±0.1399 

0.5122 

±0.0961 

0.9831 

±0.0305 

0.7921 

±0.0344 

0.4947 

±0.0546 

0.5098 

±0.0539 

DIDF 

Task 1 
0.4772 

±0.1082 

0.5934 

±0.2470 

0.7015 

±0.0655 

0.5506 

±0.1505 

0 4523 

±0 0850 

1.0065 

±0.0789 

0.7081 

±0.0378 

0.5967 

±0.1135 

0.4829 

±0.0902 

Task 2 
0 2691 

±0 0483 

0.4622 

±0.2107 

0.5859 

±0.1420 

0.4259 

±0.2468 

0.3843 

±0.0712 

1.0200 

±0.0278 

0.7668 

±0.0595 

0.3175 

±0.0796 

0.5761 

±0.1966 

Task 3 
0 2886 

±0 0352 

0.4490 

±0.1932 

0.6216 

±0.1385 

0.4384 

±0.1956 

0.3329 

±0.0761 

0.8343 

±0.0308 

0.7358 

±0.0561 

0.3418 

±0.0575 

0.3634 

±0.0614 

Average 
0 2979 

±0 0383 

0.4637 

±0.1788 

0.6021 

±0.1105 

0.4435 

±0.2215 

0.3770 

±0.0682 

0.9739 

±0.0167 

0.7418 

±0.0388 

0.3660 

±0.0419 

0.5320 

±0.1332 
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TABLE Ⅴ 

REGRESSION PERFORMANCE ON REAL-WORLD DATASETS IN TERMS OF RRSE 

 

Datasets 
 Method 

Task 
LR-S-mtTSK 

LR-S-mtTSK 

(𝛼=0) 

LR-S-mtTSK 

(𝛽=0) 
LR-S-mtTSK (𝜆=0) MT-TSK-FS Least_L21 L2-TSFS TSFS-SVR-L TSFS-SVR-G 

Fermentatio

n 

Task 1 
0 0928 

±0 0005 

0.0936 

±0.0023 

0.0951 

±0.0016 

0.0935 

±0.0023 

0.1025 

±0.0024 

0.3124 

±0.0020 

0.1436 

±0.0014 

0.1007 

±0.0029 

0.1218 

±0.0095 

Task 2 
0.3211 

±0.0167 

0.3192 

±0.0141 

0.3111 

±0.0101 

0 3031 

±0 0046 

0.3208 

±0.0176 

1.6925 

±0.0144 

0.3187 

±0.0016 

0.5232 

±0.0153 

0.6002 

±0.0251 

Task 3 
0 0773 

±0 0003 

0.0806 

±0.0021 

0.0801 

±0.0025 

0.0781 

±0.0036 

0.0821 

±0.0032 

0.2418 

±0.0018 

0.1298 

±0.0010 

0.0861 

±0.0029 

0.1521 

±0.0237 

Average* 
0 0666 

±0 0002 

0.0678 

±0.0012 

0.0685 

±0.0008 

0.0671 

±0.0019 

0.0728 

±0.0019 

0.2201 

±0.0011 

0.1051 

±0.0007 

0.0731 

±0.0013 

0.1010 

±0.0093 

Slump 

Task 1 
1.1313 
±0.0605 

1.2336 
±0.1053 

1.1582 
±0.0591 

1.2146 
±0.0516 

1.4959 
±0.0361 

1.5586 
±0.0193 

0 9526 

±0 0109 
1.2992 
±0.1970 

1.6684 
±0.1855 

Task 2 
0 9482 

±0 0116 

0.9681 

±0.0562 

0.9776 

±0.0389 

1.0139 

±0.0199 

1.0123 

±0.0462 

1.0839 

±0.0161 

1.0964 

±0.0241 

1.0902 

±0.0863 

1.1458 

±0.1165 

Task 3 
0.3341 

±0.0192 

0.3160 

±0.0171 

0.3104 

±0.0269 

0 3084 

±0 0406 

0.3687 

±0.0251 

0.3955 

±0.0090 

0.7526 

±0.0376 

0.4688 

±0.0826 

0.3312 

±0.0440 

Average* 
0 5380 

±0 0081 

0.5514 

±0.0198 

0.5638 

±0.0136 

0.5684 

±0.0189 

0.5716 

±0.0192 

0.5781 

±0.0078 

0.7064 

±0.0104 

0.6187 

±0.0254 

0.5912 

±0.0239 

Communitie

s and Crime 

Task 1 
0 3236 

±0 0431 

0.3363 

±0.0413 

0.5404 

±0.0884 

0.5280 

±0.0129 

0.3548 

±0.0400 

0.6366 

±0.0106 

0.6089 

±0.0772 

0.5128 

±0.2057 

0.3990 

±0.1536 

Task 2 
0 6801 

±0 0175 

0.7070 

±0.0306 

0.7141 

±0.0330 

0.7272 

±0.0303 

0.7019 

±0.0485 

0.6837 

±0.0138 

0.9119 

±0.0320 

0.7491 

±0.0639 

0.7452 

±0.1101 

Task 3 
0 7614 

±0 0321 

0.7700 

±0.0271 

0.9867 

±0.0609 

1.0264 

±0.0508 

0.7726 

±0.1310 

0.9012 

±0.0081 

1.1225 

±0.1384 

1.1469 

±0.3363 

1.0428 

±0.2660 

Task 4 
0.7582 

±0.0501 

0.8146 

±0.0509 

0.8113 

±0.0540 

0.7902 

±0.0678 

0.7365 

±0.0383 

0.8624 

±0.0997 

1.0992 

±0.1032 

0.8122 

±0.0850 

0 7241 

±0 0866 

Average* 
0 5684 

±0 0064 

0.5868 

±0.0135 

0.6492 

±0.0221 

0.6543 

±0.0180 

0.5778 

±0.0033. 

0.6137 

±0.0137 

0.8117 

±0.0315 

0.7080 

±0.0532 

0.6504 

±0.0785 

Housing 

Task 1 
0 3299 

±0 0131 

0.3517 

±0.0286 

0.3418 

±0.0349 

0.3361 

±0.0477 

0.4038 

±0.0396 

0.8399 

±0.0067 

0.4441 

±0.0125 

0.3643 

±0.0273 

0.5401 

±0.0418 

Task 2 
0 4287 

±0 0212 
0.4378 
±0.0753 

0.4810 
±0.0788 

0.4763 
±0.0619 

0.4314 
±0.0268 

0.8589 
±0.0122 

0.4753 
±0.0342 

0.6106 
±0.1170 

0.7614 
±0.0801 

Task 3 
0 6750 

±0 0295 

0.7130 

±0.0484 

0.6965 

±0.0454 

0.7249 

±0.0403 

0.8390 

±0.1166 

0.9903 

±0.0255 

0.7632 

±0.0342 

0.7774 

±0.0607 

0.9851 

±0.0815 

Average* 
0 4220 

±0 0119 

0.4530 

±0.0486 

0.4686 

±0.0355 

0.4598 

±0.0340 

0.4806 

±0.0248 

0.7739 

±0.0087 

0.4997 

±0.0152 

0.5453 

±0.0670 

0.6770 

±0.0478 

 *Average means the average performance of the multi-task model for the multiple tasks. 
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TABLE Ⅵ 

THREE-TASK SYNTHETIC DATASETS CREATED FOR CLASSIFICATION EXPERIMENTS 

 

Tasks (Center) Number of subjects (Patients/NCs) Sex (Male/Female) 

NYU 183(105/78) 146/37 

UCLA_1 72(32/40) 62/10 

UM_1 96(54/42) 72/24 

YALE 55(28/27) 40/15 

 
 

TABLE Ⅶ 
PERFORMANCE IN THE CLASSIFICATION OF ASD AND NC  

 
Models 

Centers  LR-S-mtTSK LR-S-mtTSK (𝛼=0) LR-S-mtTSK (𝛽=0) LR-S-mtTSK (𝜆=0) MT-TSK-FS Least_L21 L2_TSFS TSFS-SVM-L TSFS-SVM-G SVM-L SVM-G 

NYU 

ACC 
0 7158 

±0 0125 

0.6967 

±0.0173 

0.6989 

±0.0151 

0.6951 

±0.0119 

0.7033 

±0.0217 

0.6699 

±0.0221 

0.6661 

±0.0121 

0.6907 

±0.0132 

0.6842 

±0.0160 

0.6940 

±0.0232 

0.6863 

±0.0318 

SEN 
0.5769 

±0.1200 

0.4455 

±0.1089 

0.3179 

±0.0695 

0.5256 

±0.1269 

0 8162 

±0 0795 

0.3449 

±0.0699 

0.7590 

±0.0803 

0.5487 

±0.0150 

0.5641 

±0.0181 

0.5564 

±0.0410 

0.5897 

±0.0353 

SPE 
0.8190 

±0.0834 

0 8833 

±0 0842 

0.8585 

±0.0477 

0.8210 

±0.0962 

0.5513 

±0.1364 

0.9114 

±0.1224 

0.5410 

±0.1193 

0.7962 

±0.0205 

0.7733 

±0.0304 

0.7962 

±0.0299 

0.7581 

±0.0461 

AUC 
0 7636 

±0 0128 

0.7255 

±0.0191 

0.7207 

±0.0267 

0.7287 

±0.0111 

0.7265 

±0.0286 

0.6736 

±0.0279 

0.7015 

±0.0146 

0.7383 

±0.0136 

0.7383 

±0.0136 

0.6763 

±0.0241 

0.7224 

±0.0410 

UCLA_1 

ACC 
0 7118 

±0 0216 

0.6719 

±0.0241 

0.6542 

±0.0281 

0.6639 

±0.0231 

0.6000 

±0.0269 

0.6972 

±0.0313 

0.7069 

±0.0181 

0.6778 

±0.0204 

0.6000 

±0.0555 

0.6309 

±0.0509 

0.6611 

±0.0188 

SEN 
0 7188 

±0 0728 

0.6938 

±0.1117 

0.6650 

±0.1266 

0.6225 

±0.1247 

0.3531 

±0.2699 

0.7525 

±0.1589 

0.6688 

±0.1519 

0.7800 

±0.0187 

0.6250 

±0.1304 

0.6350 

±0.0604 

0.6800 

±0.0322 

SPE 
0.7031 

±0.0925 

0.6445 

±0.1380 

0.6786 

±0.1631 

0.7156 

±0.1527 

0 7975 

±0 1769 

0.6281 

±0.1107 

0.7375 

±0.1195 

0.5500 

±0.0375 

0.5688 

±0.0996 

0.6250 

±0.0988 

0.6375 

±0.0468 

AUC 
0.7115 

±0.0300 

0.6771 

±0.0341 

0.6578 

±0.0346 

0.6545 

±0.0358 

0.5541 

±0.0468 

0.7143 

±0.0373 

0 7268 

±0 0210 

0.6709 

±0.0187 

0.6709 

±0.0187 

0.6359 

±0.0686 

0.6553 

±0.0134 

UM_1 

ACC 
0 7552 

±0 0224 

0.7383 

±0.0156 

0.7052 

±0.0326 

0.7333 

±0.0330 

0.7490 

±0.0257 

0.7354 

±0.0168 

0.6542 

±0.0153 

0.6896 

±0.0290 

0.7021 

±0.0083 

0.7042 

±0.0346 

0.6958 

±0.0212 

SEN 
0.6429 

±0.0826 

0.6399 

±0.0916 

0.4762 

±0.0952 

0.5905 

±0.1321 

0.7704 

±0.0934 

0.7333 

±0.0768 

0 8352 

±0 0818 

0.6143 

±0.0610 

0.6524 

±0.0190 

0.6190 

±0.0621 

0.6429 

±0.0151 

SPE 
0 8426 

±0 0387 

0.8148 

±0.0857 

0.8254 

±0.0764 

0.8414 

±0.0764 

0.7214 

±0.1049 

0.7370 

±0.1325 

0.4214 

±0.1038 

0.7481 

±0.0251 

0.7407 

±0.0166 

0.7704 

±0.0343 

0.7370 

±0.0296 

AUC 
0 8070 

±0 0198 

0.7718 

±0.0179 

0.7503 

±0.0436 

0.7617 

±0.0324 

0.7761 

±0.0351 

0.7774 

±0.0177 

0.6145 

±0.0193 

0.7352 

±0.0246 

0.7352 

±0.0246 

0.7651 

±0.0145 

0.7487 

±0.0317 

YALE 

ACC 
0 7273 

±0 0493 

0.6886 

±0.0338 

0.7209 

±0.0493 

0.7073 

±0.0349 

0.6073 

±0.0392 

0.6855 

±0.0390 

0.5818 

±0.0250 

0.5491 

±0.0556 

0.5164 

±0.0392 

0.6000 

±0.0445 

0.5891 

±0.0272 

SEN 
0 7037 

±0 1296 

06620 

±0.1394 

0.6333 

±0.1277 

0.6556 

±0.0845 

0.6214 

±0.2096 

0.6852 

±0.1327 

0.444 

±0.099 

0.5333 

±0.0798 

0.4222 

±0.1493 

0.5037 

±0.0687 

0.5778 

±0.1231 

SPE 
0 7500 

±0 1174 

0.7143 

±0.1393 

0.7245 

±0.1321 

0.7571 

±0.0746 

0.5926 

±0.1874 

0.6857 

±0.1325 

0.7143 

±0.0368 

0.5643 

±0.0915 

0.6071 

±0.1917 

0.6929 

±0.0286 

0.6000 

±0.1020 

AUC 
0 7232 

±0 0377 

0.6762 

±0.0310 

0.7204 

±0.0653 

0.7001 

±0.0429 

0.5480 

±0.0549 

0.6724 

±0.0453 

0.5365 

±0.0238 

0.5786 

±0.0440 

0.5786 

±0.0440 

0.6263 

±0.0572 

0.6054 

±0.0330 
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Fig. 4 ROC curves on ASD classification. 

 
Fig. 5 Classification performance when α, β, λ take different values. (the first sub-figure misses the lower border???) 
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C. Classification 

To evaluate the performance of the proposed algorithm on 

classification tasks, we employed the ABIDE dataset for multi-

center autism spectrum disorder (ASD) diagnosis [29], where 

the functional magnetic resonance imaging (fMRI) scans from 

four imaging centers, denoted by NYU, UCLA_1, UM_1 and 

YALE, were used. Details of the data were shown in Table VI. 

In each imaging center, the numbers of ASD patients and 

normal controls (NCs) were comparable. We considered ASD 

classification in each imaging center as a learning task. In our 

experiments, the fMRI scans were preprocessed using the 

method in [29] and a multitask dataset with 400-dimensional 

features were thus generated. This is a typical multitask 

learning problem that each task only includes a limited number 

of samples with high dimensional features. The proposed LR-

S-mtTSK model and the other methods were evaluated using 

the ASD classification dataset. The results are shown in 

Table VII and Fig. 4. It is obvious that the LR-S-mtTSK method 

Task 1

Task 2

Task 3

Task 4

𝐖 𝐕 𝐄 

 
Fig. 6 In multitask learning, the joint matrix 𝐖 is decomposed into two components: one is a low-rank matrix 𝐕 which indicates that the consequent parameters 

of rules across multiple tasks have similar structures; the other is 𝐄 that denotes the task-specific component.  
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has higher classification accuracy than the methods under 

comparison. This verify that incorporating low-rank structure 

and sparse consequent parameters in multitask TSK fuzzy 

modeling is effective in dealing with the problem of  

insufficient and low-quality training samples. 

D. Effect of the low-rank component in 𝑾 

Experiments were conducted to evaluate the effect of each 

regularization term on ASD classification. In the experiments, 

the optimal hyperparameters were first determined by 5 cross-

validation. Then, we fixed the other hyperparameters and varied 

the values of 𝛼 , 𝛽 , 𝜆  within {10−5, 10−3,···, 106 } . The 

classification performance with respect to each coefficient is 

shown in Fig. 5. The results show that, with reasonable 

hyperparameters, the proposed regularization term is beneficial 

to multitask modeling. We further selected 100 columns from 

the matrices 𝐖, 𝐕 and 𝐄, and visualized their optimized values 

in Fig. 6. It can be seen that that 𝐖 was decomposed into the 

low-rank components 𝐕 and the sparse components 𝐄. 

V. CONCLUSIONS 

While multitask modeling for TSK fuzzy systems have better 

generalization ability than single task modeling methods, the 

existing multitask modeling methods ignore the balance 

between the sharing of the common knowledge and the 

preservation of discriminative ability of the consequent 

parameters of the rules. To this end, we proposed a novel 

manifold-regularized multitask TSK fuzzy modeling method 

with low-rank structure and sparse consequent parameters. The 

method uses fuzzy clustering to obtain the fuzzy dictionaries for 

each task, and learns the low-rank structure of the tasks and the 

sparse consequent parameters of each task for the task-specific 

information. Furthermore, the method considers ‘feature-

feature’ relation in each rule by introducing manifold 

regularizations, where ALM was used  to solve the optimization 

problem.  

The experimental results indicate that the proposed method 

is superior to other comparison methods and that by considering 

the balance between the sharing of the common knowledge and 

the preservation of discriminative ability, the performance of 

multitask fuzzy systems can be effectively improved. However, 

there are still issues that require further investigation. For 

example, we can assume that, if two samples in different tasks 

are similar, the corresponding outputs should also be similar. 

Therefore, the intrinsic ‘sample-sample’ relation can also be 

considered for multitask modeling for TSK fuzzy systems. On 

the other hand, the proposed method ignores the inter-task 

correlation in generating the premise of the fuzzy rules across 

multiple tasks. It is worthwhile to study the effect of introducing 

inter-task information into clustering on the modeling accuracy 

of multitask fuzzy systems. 
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