Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103637
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Nursing-
dc.creatorWang, Gen_US
dc.creatorTeoh, JYCen_US
dc.creatorLu, Jen_US
dc.creatorChoi, KSen_US
dc.date.accessioned2024-01-02T03:09:34Z-
dc.date.available2024-01-02T03:09:34Z-
dc.identifier.issn1868-8071en_US
dc.identifier.urihttp://hdl.handle.net/10397/103637-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© Springer-Verlag GmbH Germany, part of Springer Nature 2020en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s13042-020-01081-y.en_US
dc.subjectAUC performance indexen_US
dc.subjectImbalanced dataen_US
dc.subjectLeast squares support vector machinesen_US
dc.subjectLeave-one-out cross validationen_US
dc.subjectProstate cancer detectionen_US
dc.titleLeast squares support vector machines with fast leave-one-out AUC optimization on imbalanced prostate cancer dataen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1909en_US
dc.identifier.epage1922en_US
dc.identifier.volume11en_US
dc.identifier.issue8en_US
dc.identifier.doi10.1007/s13042-020-01081-yen_US
dcterms.abstractQuite often, the available pre-biopsy data for early prostate cancer detection are imbalanced. When the least squares support vector machines (LS-SVMs) are applied to such scenarios, it becomes naturally desirable for us to introduce the well-known AUC performance index into the LS-SVMs framework to avoid bias towards majority classes. However, this may result in high computational complexity for the minimal leave-one-out error. In this paper, by introducing the parameter λ, a generalized Area under the ROC curve (AUC) performance index RAUCLS is developed to theoretically guarantee that RAUCLS linearly depends on the classical AUC performance index RAUC. Based on both RAUCLS and the classical LS-SVM, a new AUC-based least squares support vector machine called AUC-LS-SVMs is proposed for directly and effectively classifying imbalanced prostate cancer data. The distinctive advantage of the proposed classifier AUC-LS-SVMs exists in that it can achieve the minimal leave-one-out error by quickly optimizing the parameter λ in RAUCLS using the proposed fast leave-one-out cross validation (LOOCV) strategy. The proposed classifier is first evaluated using generic public datasets. Further experiments are then conducted on a real-world prostate cancer dataset to demonstrate the efficacy of our proposed classifier for early prostate cancer detection.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInternational journal of machine learning and cybernetics, Aug. 2020, v. 11, no. 8, p. 1909-1922en_US
dcterms.isPartOfInternational journal of machine learning and cyberneticsen_US
dcterms.issued2020-08-
dc.identifier.scopus2-s2.0-85080919001-
dc.identifier.eissn1868-808Xen_US
dc.description.validate202312 bckw-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberSN-0140-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextITF; Australian Research Council (ARC)en_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS20904907-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wang_Least_Squares_Support.pdfPre-Published version498.73 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

59
Citations as of May 11, 2025

Downloads

53
Citations as of May 11, 2025

SCOPUSTM   
Citations

12
Citations as of May 29, 2025

WEB OF SCIENCETM
Citations

34
Citations as of May 29, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.