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Abstract Quite often, the available pre-biopsy data
for early prostate cancer detection are imbalanced. When
the least squares support vector machines (LS-SVMs)
are applied to such scenarios, it becomes naturally de-
sirable for us to introduce the well-known AUC per-
formance index into the LS-SVMs framework to avoid
bias towards majority classes. However, this may re-
sult in high computational complexity for the minimal
leave-one-out error. In this paper, by introducing the
parameter λ, a generalized Area under the ROC curve
(AUC) performance index RAUCLS is developed to the-
oretically guarantee that RAUCLS linearly depends on
the classical AUC performance index RAUC . Based on
both RAUCLS and the classical LS-SVM, a new AUC-
based least squares support vector machine called AUC-
LS-SVMs is proposed for directly and effectively clas-
sifying imbalanced prostate cancer data. The distinc-
tive advantage of the proposed classifier AUC-LS-SVMs
exists in that it can achieve the minimal leave-one-
out error by quickly optimizing the parameter λ in
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RAUCLS using the proposed fast leave-one-out cross
validation (LOOCV) strategy. The proposed classifier is
first evaluated using generic public datasets. Further ex-
periments are then conducted on a real-world prostate
cancer dataset to demonstrate the efficacy of our pro-
posed classifier for early prostate cancer detection.
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1 Introduction

Prostate cancer is one of the most common malignan-
cies in males. In 2017, there were an estimated 161,360
new prostate cancer cases (nearly 10% of all the new
cancer cases) and 26,730 deaths in the United States
[1]. Traditionally, prostate cancer is screened by test-
ing prostate-specific antigen (PSA) level in blood [6,
30], or performing digital rectal exam (DRE), where
the doctor puts a gloved finger into the rectum to feel
the prostate gland. If PSA level is elevated or DRE
finding is abnormal, a higher risk of prostate cancer
is suspected and prostate biopsy is recommended for
further screening [10,11]. However, prostate biopsy as
an invasive procedure may bring high risks of discom-
fort, infection and bleed to patients. Also, to avoid mis-
diagnosis, repeated biopsies are sometimes performed
to guarantee the screening results, which may give pa-
tients emotional and physical pain. On the other hand,
unnecessary biopsies should be avoided in patients with
low-grade prostate cancer risks to prevent overdiagno-
sis and overtreatment. Therefore, to cut down unneces-
sary biopsies, researchers started to explore mathemati-
cal and computational methods to detect early prostate
cancer using pre-biopsy information.
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Support Vector Machines (SVMs) [17] as one of the
most commonly used machine learning methods have
been extensively taken to detect prostate cancer in the
past decades. The main idea of SVMs is to construct a
hyperplane in a high dimensional space, which has the
largest margin between the closest training data points
from different classes. The high dimensional space is
mapped from the original finite dimensional space to
make the separation easier in that space by using the
kernel trick. The magic of kernel trick lies in that it
is possible to compute the separating hyperplane with-
out explicitly carrying out the mapping into the feature
space, which reduces the computational cost. SVMs are
very popular in the prostate cancer research field due
to its ability to successfully generate high generaliza-
tion performance. For example, Çınar et al. [15] de-
signed a SVMs classifier based expert system for early
diagnosis of prostate cancer by using prostate volume,
density and other features to avoid biopsy. SVMs with
polynomial based kernel function achieved the best per-
formance (accuracy: 79%) among all the comparative
methods, including artificial neural network. Li et al.
[27] proposed a non-invasive prostate cancer screening
methods using serum surface-enhanced Raman scatter-
ing (SERS) and SVMs via peripheral blood samples.
The experimental results showed that the SVMs based
diagnostic model achieved the accuracy of 98.1%, su-
perior to the results of 91.3% obtained from the prin-
cipal component analysis. In [7], a variant of SVMs is
presented for automated prostate cancer localization,
and the results showed that the proposed method can
significantly boost the performance in contrast to the
traditional SVMs. In another study, Liu Ying [28] in-
troduced a SVMs based active learning algorithm and
then applied it to gene expression profiles of prostate
cancer samples for classification. Compared with pas-
sive learning, the proposed algorithm yielded more ac-
curate results in classifying cancerous samples.

Although various prostate cancer detection studies
have been performed using SVMs and its variants, very
few studies have been done to deal with class imbal-
ance problem mainly. Class imbalance is a significant
challenge in the cancer data in which there is a much
larger number of normal cases compared to the cancer
cases in a cohort [25]. Most traditional machine learn-
ing methods like SVMs directly training on the imbal-
anced datasets tend to be overwhelmed by the majority
class and thus lead to the deterioration of the perfor-
mance on the minority class [14]. In such scenarios, the
Area Under the ROC Curve (AUC) has been recognized
as a more appropriate performance index than accu-
racy [22]. Since AUC maximization becomes the target,
a classifier that is designed to optimize AUC directly

should have a significant advantage to solve the class
imbalance problem. To achieve this goal, some efforts
have been made to adapt SVMs for straight-forward
AUC optimization [5,9,23,39,42].

This study mainly concentrates on how to integrate
the AUC optimization into the SVMs based learning
framework. More concretely, we propose a new AUC
optimization algorithm called AUC-LS-SVMs based on
a well-known variant of SVMs - least square support
vector machines (LS-SVMs) [38] to particularly han-
dle the class imbalance problem in the early prostate
cancer detection. LS-SVMs have the comparable clas-
sification performance to the classical SVMs, but their
learning processes are greatly simplified by solving a set
of linear equations instead of a QP problem in SVMs
[38]. More importantly, with the proposed generalized
AUC performance index RAUCLS , the analytical solu-
tion of AUC-LS-SVMs can facilitate the fast leave-one-
out cross validation (LOOCV) error estimate for AUC’s
parameter tuning, which greatly reduces the computa-
tional cost. To sum up, the contributions of our work on
the proposed classifier AUC-LS-SVMs are as follows.

– A generalized AUC performance index RAUCLS is
proposed by introducing the parameter λ. Our the-
oretical analysis indicated that RAUCLS is linearly
dependent on the classical AUC performance index
RAUC .

– With both RAUCLS and LS-SVMs, AUC-LS-SVMs
is proposed to have an analytical solution to ex-
plicitly handle the class imbalance problem. Differ
from the traditional cost sensitive methods, AUC-
LS-SVMs does not require prior knowledge of the
misclassification costs in advance.

– A fast leave-one-out cross validation strategy for the
parameter λ in RAUCLS is developed to guarantee
that of AUC-LS-SVMs is an almost unbiased clas-
sifier on imbalanced data, without heavy computa-
tional burden.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the related work about SVMs based
methods for class imbalance problems. Section 3 clari-
fies the notations used in the paper, reviews LS-SVM
and states the proposed concept of RAUCS . Section 4
presents the proposed classifier AUC-LS-SVMs. Section
5 states the proposed fast leave-one-out cross valida-
tion strategy for the proposed classifier. Experimental
results on the public datasets and a real-world prostate
cancer dataset are presented and analyzed in Section 6.
Section 7 concludes the paper.
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2 Related Work

Here we briefly review the related works about SVMs
based methods for class imbalance problems. Commonly,
the performance of SVMs and its variants deteriorates
due to imbalanced class distributions. A standard solu-
tion is to assign different error costs to training samples
based on their classes [18,26,29,40,43]. For example,
Zhu et al. [44] proposed a majority projection (MP) ver-
sion of the traditional multiple empirical kernel learning
(MEKL) to deal with imbalanced problems by intro-
ducing a weight matrix and a regularization term into
MEKL. In another study, Ghazikhani et al. [21] devel-
oped an on-line model to deal with concept drift and
class imbalance in which different importance to error
is assigned in separate classes. These SVMs based ap-
proaches are based on the assumption that the misclas-
sification costs are already known [18,26]. However, we
usually do not have prior information regarding these
costs; thus, we cannot correctly use these approaches.
Another solution to deal with class imbalance issues is
to incorporate AUC optimization in SVMs based meth-
ods. The ROC curve is an appropriate metric to eval-
uate machine learning models on imbalanced datasets,
representing the rates of true positive against false pos-
itive under different thresholds. AUC refers to the area
under ROC curve. It is equal to the probability that a
classifier assigns a higher score to a randomly chosen
positive instance than a randomly chosen negative one.
Higher the AUC is, better the model is at distinguish-
ing two imbalanced classes. Since the goal of imbal-
anced data classification is to find a decision function
having high AUC value, it is natural to consider mod-
ifying a learning algorithm that can directly maximize
AUC performance index. In literature, some AUC op-
timization studies using SVMs have been proposed [8,
16,9,24,31,42]. For example, Rakotomamonjy [31] pro-
posed a SVMs based algorithm for AUC maximization
in which a numerically tractable approximation of AUC
criterion is derived. To speed up the QP problem, a
subset m of interesting neighbors of a sample can be
user-defined. However, the best value of m is problem-
dependent due to the relevance to class distributions.
Scheffer [8] proposed an AUC maximizing SVMs with
O(n4) time complexity which becomes feasible only for
small datasets. The proposed k-means AUC SVMs is
more efficient in which the running time is quadratic in
the sample size but only feasible for linear kernels.

Since the introduction of SVMs, various variants
have been developed. For example, in [32], the authors
combined the SVM algorithms with intuitionistic fuzzy
sets for the first time to build a IFTSVM model which
significantly alleviates the influence of noises and out-

liers. In this study, we focus on one of the classical
variants of SVMs, i.e., least-squares SVMs (LS-SVMs).
It simplifies the SVMs’ formulation without losing the
classification performance advantages. Moreover, LS-
SVMs can formulate a fast leave-one-out cross valida-
tion strategy to unbiasedly estimate the actual general-
ization ability in parameter tuning procedures and re-
duce high computational cost [12]. Thus, in this study,
we seek for a LS-SVMs based AUC method for imbal-
anced data classification to improve both effectiveness
and efficiency. To our knowledge, this is the first work
to develop a LS-SVMs method on the imbalanced data,
which can directly maximize the AUC and use the fast
leave-one-out cross validation strategy to guarantee an
almost unbiased estimate in parameter tuning.

3 On LS-SVMs and the proposed performance
index RAUCLS

In this section, we will briefly review the well-known
least square support vector machine (LS-SVM) and the
concept of AUC, and accordingly, propose the general-
ized AUC performance index RAUCLS .

3.1 On LS-SVMs for binary classification

The LS-SVMs classifier [34] is proposed as an alter-
native formulation compared to the traditional SVMs.
Given the training set S ofN samples {xi, yi}Ni=1, where
xi ∈ Rd is the i-th sample and yi ∈ {+1,−1} is the
corresponding label. The discriminant function has the
following form:

g(x) = wTϕ(x) + b (1)

where ϕ(·) : Rd → Rh is the mapping function that
maps the sample x from the input space to the higher
dimensional feature space. Afterw, b are fixed, the label
of a testing sample x can be easily predicted according
to the sign of g(x).

The LS-SVMs classifier is obtained by finding the
solution of the following primal optimization problem

min
w,b,ξ

1

2
wTw +

γ

2

N∑
i=1

ξ2i

s.t yi = wTϕ(xi) + b+ ξi, i = 1, 2, ..., N

(2)

where the trade-off parameter γ > 0. In particular, the
dual optimization problem of Eq. (2) has an analytical
solution [34], which can easily be used to formulate the
fast LOOCV error estimate for parameter tuning so as
to reduce the computational cost.
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3.2 On AUC, RAUC and RAUCLS

Given an input space X, an output space Y = {−1, 1},
and P as the distribution of (x, y), i.e. the joint dis-
tribution of an sample x and its corresponding label
y. The target of a classification algorithm is to learn a
scoring function s as a map X → R, where s(xi) is the
scoring function which is in proportion to P (y = 1|x),
which is the conditional probability of the label to be
positive given its inputs.

As stated in [9,23,42,39,16,19,20], AUC refers to
the possibility that a randomly sampled positive sample
has a higher score than a negative one, which can be
represented using

AUC = P(s(x1) > s(x2)|y1 = 1, y2 = −1) (3)

It has been known that AUC is a more stable and ro-
bust performance index than accuracy for imbalanced
binary classification tasks. However, since we usually do
not know the distribution P, AUC cannot be directly
calculated from Eq. (3). In order to address this issue,
given a training dataset S of N samples sampled from
P, i.e., S = {(xi, yi) ∈ (X × Y ), i = 1, · · · , N}, we
can estimate AUC by substituting the possibility with
its corresponding frequency on S. The loss form of this
estimation can be expressed as

AUC =
∑
i∈N+

∑
j∈N−

I[s(xi) < s(xj)] +
1
2I[s(xi) = s(xj)]

n+n−

(4)

where I[A] is the indicator function. That is to say,
I[A] = 1 if and only if A is true, I[A] = 0 otherwise; N+

is the set of all the indices of positive samples and N−
is the set of those of the negative samples; n+ = |N+|;
n− = |N−|.

Although we could estimate AUC on any dataset
sampled from P, we notice that, the ranking loss

I[s(xi) < s(xj)]+
1

2
I[s(xi) = s(xj)],

xi ∈ N+,xj ∈ N−
(5)

is a discrete and non-differentiable function, straight-
forward optimization of AUC is a NP problem. To make
it practical, Eq. (5) is often approximated by a differ-
entiable surrogate loss function l(t). Replacing l(t) into
Eq. (4), we can obtain the classical surrogate empirical
risk function RAUC [16,19,20] based on the training
dataset S

RAUC =
∑
i∈N+

∑
j∈N−

l(s(xi)− s(xj))
n+n−

(6)

As stated in [19], the surrogate loss l(t) in Eq. (6) may
be taken as l(t) = (1− t)2 with the consistence guaran-
tee of AUC. In other words, we have

RAUC =
∑
i∈N+

∑
j∈N−

1− (s(xi)− s(xj))2

n+n−
(7)

Obviously, if we take the discriminant function in
Eq. (1) as s(x) in Eq. (7), then b will automatically
vanish in terms of

(
s(xi)−s(xj)

)
in Eq. (7). As a result,

in this study, we take s(x) in Eq. (7) as the discriminant
function in Eq. (1), and then propose the generalized
AUC performance index RAUCLS by introducing the
parameter λ inRAUC . That is to say,RAUCLS is defined
as

RAUCLS =
∑
i∈N+

∑
j∈N−

(λ− (wTϕ(xi) + b−wTϕ(xj)− b))2

n+n−

=
∑
i∈N+

∑
j∈N−

(λ− (wT (ϕ(xi)− ϕ(xj)))2

n+n−

(8)

To best of our knowledge, up to date, no effort has
been taken to generalize the concept of AUC in this
way.

Theorem 1 For a binary classification task, when s(x)
in Eq. (7) is taken as the discriminant function in Eq.
(1), minimizing RAUCLS is equivalent to minimizing
RAUC with another discriminant function which is just
the discriminant function in RAUCLS multiplied by a
constant.

Proof When s(x) takes the discriminant function in Eq.
(1), RAUC in Eq. (7) becomes Eq. (8). After multi-
plying the discriminant function with a constant λ, we
can readily know that the new discriminant function
after such a multiplication does not change the dis-
criminant result for a binary classification task. There-
fore, with such a λ, the discriminant function becomes
λ(wTϕ(xi) + b). As RAUCLS is not dependent on b,
RAUCLS with the new discriminant function becomes

RAUCLS =
∑
i∈N+

∑
j∈N−

(λ− λwT (ϕ(xi)− ϕ(xj)))2

n+n−

= λ2
∑
i∈N+

∑
j∈N−

(1−wT (ϕ(xi)− ϕ(xj)))2

n+n−

= λ2RAUC

(9)

When λ is given, λ2 becomes a constant. Thus, this
theorem holds true.

Theorem 1 reveals that without any change in the dis-
criminant results on a binary classification task, when
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RAUCLS achieves the minimum,RAUC achieves its min-
imum as well. Here, the introduction of the parameter
λ contributes to the development of the fast leave-one-
out cross validation strategy for the proposed classifier,
which will be discussed in the next section.

4 The proposed classifier

In this section, we will introduce the proposed classi-
fier AUC-LS-SVMs for binary class imbalance learning.
To achieve this, according to Theorem 1, we directly
add the proposed generalized AUC performance index
RAUCLS in Eq. (8) to the LS-SVMs framework. Thus,
we have the following primal optimization problem

min
w,b,ξ

1

2
wTw +

C

2
RAUCLS +

γ

2

N∑
i=1

ξ2i

s.t yi = wTϕ(xi) + b+ ξi, i = 1, 2, ..., N

(10)

Compared to the traditional LS-SVMs in Eq. (2), the
proposed classifier in Eq. (10) has an additive term
RAUCLS . Since the additive term RAUCLS is essen-
tially a convex function about w, RAUCLS actually
contributes an extra generalization capability to the
traditional LS-SVMs, according to the statistical learn-
ing theory [35]. In other words, the proposed classi-
fier in Eq. (10) has more generalization capability than
the traditional LS-SVMs. This will also be proved ex-
perimentally on the imbalanced datasets in Section 6
later. In addition, the distinctive benefit from the use
of RAUCLS in Eq. (9) exists in that it can help us de-
rive a fast leave-one-out cross validation strategy for
the proposed classifier AUC-LS-SVMs, which will be
clearly seen in the next section.

According to the Lagrangian optimization strategy,
Eq. (10) has its dual solution. That is to say, by us-
ing the matrix inversion, the model parameter α and b
in the corresponding dual optmization problem can be
simply calculated by the following Eq. (11).

[
α

b

]
= P

[
y − λf

0

]
(11)

where P = V−1 and V is the first matrix on the left in
Eq. (36) in the appendix. Therefore, the detailed deriva-
tions can be found in the appendix. The final discrim-
inant function of the proposed AUC-LS-SVMs can be

expressed as follows

g(x) = ϕT (x)w + b

=
(
ϕT (x)− ϕT (x)

M

∑
k∈N+

∑
l∈N−

(
ϕ(xk)− ϕ(xl)

)(
ϕ(xk)− ϕ(xl)

)T)
( N∑
i=1

αiϕ(xi) +
λC

n+n−

∑
i∈N+

∑
j∈N−

(
ϕ(xi)− ϕ(xj)

))
+ b

=
(
ϕT (x)− 1

M

∑
k∈N+

∑
l∈N−

(
k(x,xk)− k(x,xl)

)(
ϕ(xk)− ϕ(xl)

)T)
( N∑
i=1

αiϕ(xi) +
λC

n+n−

∑
i∈N+

∑
j∈N−

(
ϕ(xi)− ϕ(xj)

))
+ b

=

N∑
i=1

αik(x,xi) +
λC

n+n−

∑
i∈N+

∑
j∈N−

(
k(x,xi)− k(x,xj)

)
− 1

M

∑
k∈N+

∑
l∈N−

(
k(x,xk)− k(x,xl)

) N∑
i=1

αi
(
k(xk,xi)−

k(xl,xi)
)
− λC

Mn+n−

∑
k∈N+

∑
l∈N−

∑
i∈N+

∑
j∈N−

(
k(x,xk)− k(x,xl)

)
(
k(xk,xi)− k(xk,xj)− k(xl,xi) + k(xl,xj)

)
+ b

(12)

With Eq. (11) and Eq. (12), we summarize the entire
learning algorithm of AUC-LS-SVMs in Algorithm 1.
Please note, Algorithm 1 uses a fast leave-one-out cross
validation strategy to tune the parameter λ, which will
be stated in algorithm 2 in the next section.

Algorithm 1 Learning Algorithm of AUC-LS-SVMs
1: Input training set of N samples {xi, yi}Ni=1, xi ∈
Rd, yi ∈ {+1,−1} for binary classification, and the
trade-off parameters γ ∈ {1, 10, 50, 100, 150, 200, 250}, C ∈
{0.01, 0.1, 1, 10, 25, 50} in our experiments
2: Calculate the kernel matrix K̃ and the vector f according
to their definitions in Eq. (36) in the appendix
3: Invoke Algorithm 2 to obtain λ, where Algorithm 2 using
the proposed fast LOOCV is given in the section 5
4: Calculate w and b using Eq. (11) and Eq. (26) in the
appendix
5: Output discriminant function g(x) using Eq. (12)

When λ is fixed, below let us discuss the computa-
tional complexity of both training and prediction of the
above LS-SVMs. As for its training, according to Eq.
(11) and Eq. (36) in the appendix, we first compute
K̃ in V, which requires O((n+n− + 1)N2) in terms of
the definition of k̃(xi,xk) in the appendix. We then
compute f , which requires O(N(n+n−)3) in terms of
the definition of f(xi) in the appendix. Since comput-
ing P = V−1 in Eq. (11) indeed requires O(N3), the
computational complexity of training the above AUC-
LS-SVMs becomes O(N3+(n+n−+1)N2+(n+n−)3N).
However, since K̃, f can be computed only once in ad-
vance, and accordingly P = V−1 can be computed in
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advance, such a heavy computational burden will give
no trouble for the use of the proposed LOOCV strategy
in the next section.

To predict an unseen testing sample x, it requires
O(N + n+n− + n+n−(N + (n+n−)2)) = O(N + (N +

1)n+n− + (n+n−)3) according to Eq. (12), which is
time-consuming especially whenN is big and n+ � n−.
Since Eq. (12) is a mixture of kernel functions, we may
refer to the work in [41] to simplify our model’s mixture
expression to achieve a faster prediction on request in
the future.

5 Fast leave-one-out cross validation strategy
for parameter tuning

From Section 4, we can observe that the classification
performance of the proposed classifier AUC-LS-SVMs
surely relies on the values of parameters λ, γ and C.
To determine the optimal parameter λ with the given
parameters γ and C, the classical leave-one-out cross
validation (LOOCV) strategy as an almost unbiased
estimator of the generalization error is taken here to
minimize the leave-one-out error.

LOOCV is the extreme case of K-fold CV with K
equal to the number N of samples in the dataset. In
each iteration during LOOCV, we train a model on all
the data except for one remained for prediction. This
process is repeated N times to ensure that every sample
from the training dataset has the same chance for model
construction and evaluation. The average leave-one-out
error is computed from those N constructed models for
performance. However, LOOCV is a computationally
expensive procedure. To overcome this shortage, refer-
ring to our recent works [37,36], here we derive a fast
LOOCV strategy for the proposed classifier AUC-LS-
SVMs to tune the parameter λ in Eq. (11).

We decompose V into its block presentation with
the isolation of the first row and column as follows:

V =

[
K̃+ I

γ 1

1T 0

]
=

[
v11 vT1
v1 V(−1)

]
(13)

We denote α(−i) and b(−i) as the model parame-
ters during the i-th iteration of the leave-one-out cross
validation. In the first iteration, we have:[
α(−1)
b(−1)

]
= P(−1)

(
y(−1) − λf(x(−1))

)
(14)

where P(−1) = V−1(−1) and y(−1) = [y2; y3; · · · ; yN ; 0].
We denote the predicted label of the i-th sample ex-
cluded from the training dataset as ỹi. The predicted

label of the first training sample can be represented as

ỹ1 = vT1

[
α(−1)
b(−1)

]
+ λf(x(−1))

= vT1 P(−1)

(
y(−1) − λf(x(−1))

)
+ λf(x(−1))

(15)

Considering the last N equations in Eq. (36), we
obtain

[
v1 V(−1)

] [
αT , b

]T
= (y(−1) − λf(x(−1)), and

therefore Eq. (15) can be further written into

ỹ1 = vT1 P(−1)
[
v1 V(−1)

]
[α1, · · · , αN , b]T + λf(x(−1))

= vT1 P(−1)v1α1 + vT1 [α2, · · · , αN , b]T + λf(x(−1))

(16)

In Eq. (36), the first equation of the system is y1 −
λf(x(−1)) = v11α1+vT1 [α2, α3, · · · , αN , b]T . Combined
with Eq. (16), we obtain ỹ1 = y1−λf(x(−1)). Lastly, by
using P = V−1 and the block matrix inversion lemma,
we can obtain

P =

[
u−1 −u−1v1P−1

P(−1) + u−1P(−1)vT1 v1P(−1) −u−1P(−1)vT1

]
(17)

where u = v11 − vT1 P(−1)v1. Since the system of linear
equations in Eq. (36) is not sensitive to the permuta-
tions of the ordering of the equations, we obtain

ỹi = yi − αi/Pii (18)

By defining
[
α
′T , b

′
]T

= P
[
yT , 0

]
,
[
α
′′T , b

′′
]

=

P
[
fT , 0

]
, and α = α

′ − λα′′ , then we obtain

ỹi = yi −
α
′

i

Pii
+
λα
′′

i

Pii
(19)

It is assumed that the optimal λ will retain the same
signs of ỹi and yi for all the samples in the training
dataset. However, this might result in local minima is-
sues due to its non-convex formulation. Thus, we use
the following loss function similar to hinge loss func-
tion:

l(ỹi, yi) = |1− ỹiyi|+ =

∣∣∣∣∣yiα
′

i − λα
′′

i

Pii

∣∣∣∣∣
+

(20)

where |x|+ = max{0, x}. This is a convex upper bound
to the leave-one-out misclassification loss. It prefers the
solutions in which ỹi retains the same sign of yi with
an absolute value equal to or bigger than 1. Moreover,
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considering that the cost of minority class may be over-
looked by the majority class, we enlarge minority class’
cost by n+

n−
. Therefore, the objective function becomes:

min

n+∑
i=1

l(ỹi, yi) +
n+

n−

n−∑
i=1

l(ỹi, yi)

s.t 0 ≤ λ ≤ D

(21)

where D is a constant. This optimization process can
be implemented by a projected sub-gradient descent al-
gorithm, whose pseudo-code is given in Algorithm 2.

Algorithm 2 Projected Sub-gradient Descent Algo-
rithm
1: Input α′ , α′′ ;
2: Initialize λ(0)← 0, t← 1 and ε = 10−3;
repeat

for i = 1, 2, . . . , N do

3: Update ỹi = yi −
α′
i

P ii
+
λα
′′
i

P ii
;

4: If ỹiyi > 0:
di = 1
Else di = 0

end

5: Update λ(t) ← λ(t − 1) − 1√
t

[∑n+

i=1 diyi
α
′′
i

Pii
+∑n−

i=1 diyi
n+

n−
α
′′
i

Pii

]
;

6: If λ(t) > D:
λ(t)← D
Else λ(t)← max(λ(t), 0)

7: Update t = t + 1;
until |λ(t+ 1)− λ(t)| ≤ ε;
8: Output λ(t) as λ;

One highlight of the proposed classifier AUC-LS-
SVMs is its fast computational ability in finding the
optimal value of λ using the proposed LOOCV strat-
egy. Below let us analyze the reason for this highlight.
Eq. (19) is our fast LOOCV evaluation formula. It is
easy to see from Eq. (19) that once we get P and y for
the whole training dataset, the solution for the i iter-
ation in the LOOCV can be calculated. This is much
faster as compared to the direct calculation from Pi(−1)
to get ỹi. Therefore, our proposed LOOCV only needs
to calculate the matrix inversion once. In contrast, the
traditional LOOCV requires to calculate the matrix in-
versions for N times.

In detail, our fast LOOCV’s computational cost can
be represented as O(N3 + N), where O(N3) is due to
the calculation of matrix P by the inverse of V related
to the training set, and O(N) is due to the N iterations
in Algorithm 2 for optimizing Eq. (21).

However, if we use the traditional LOOCV with grid
search, we need to find the optimal λ from a range
[λ1, λ2, ..., λT ]. The whole computational complexity would

Table 1: Details of UCI public datasets

Dataset # samples # dimensions IR
pima 768 8 1.8657
ILPD 579 10 0.3986
liver 345 6 1.3793

haerman 306 3 2.7778
german 1000 24 2.3333

australian 690 14 1.2476
svmguide1 3089 4 0.5445
svmguide3 1243 22 3.1993

become T ∗ O(N3 ∗ N) = T ∗ O(N4). This is much
more computationally expensive than the proposed fast
LOOCV strategy here.

6 Experimental results

The focus of this study is to handle imbalanced prostate
cancer datasets effectively by combining the AUC opti-
mization into an SVM based framework (i.e., LS-SVMs)
with fast leave-one-out cross validation. Therefore, we
take both SVMs and LS-SVMs as the comparative meth-
ods in our experiments. Although OPAUC in [19] seems
to be related to AUC-LS-SVMs, it is for on-line learn-
ing, which is another subfield of the research domain
and therefore is not taken as a comparative method.
The performances of AUC-LS-SVMs are evaluated on
various public datasets and a real-world prostate cancer
dataset.

6.1 Public datasets

In this section, in order to examine the performance of
the proposed classifier AUC-LS-SVMs in comparison
with traditional methods, we conduct extensive exper-
iments on various benchmark datasets. Table 1 shows
the details of eight binary-class datasets used in our
experiments. pima, ILPD, liver, haerman, german and
australian datasets can be downloaded from UCI Ma-
chine learning Repository [4]. svmguide1 and svmguide3
can be downloaded from LIB-SVM [3]. # samples and
# dimensions represent the number of samples and the
number of dimensions, respectively. IR refers to the im-
balance ratio:

IR =
n−

n+
(22)

where n− is the size of the negative class set and n+ is
that of the positive class.

To make our comparison fair, we adopt the same
setup for all methods. Gaussian kernel k(x,y) = exp(− ||x−y||

2

2σ2 )

is used for AUC-LS-SVMs and the comparative meth-
ods. For AUC-LS-SVMs, please note that our proposed
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fast LOOCV is used to tune the trade-off parameter λ
given the parameters γ and C. Therefore, three param-
eters still need to be defined in advance, which are γ, C
and kernel parameter σ. Grid search with cross valida-
tion is used to determine their optimal values from the
sets {1, 10, 50, 100, 150, 200, 250}, {0.01, 0.1, 1, 10, 25, 50}
and {2e−5, 2e−4, 2e−3, 2e−2, 2e−1, 1, 2e1, 2e2}, re-
spectively. For SVMs and LS-SVMs, grid search with
cross validation is used to tune the kernel parameter
σ and trade-off parameter C from {2e− 5, 2e− 4, 2e−
3, 2e−2, 2e−1, 1, 2e1, 2e2} and {1, 10, 50, 100, 150, 200,
250}, respectively.

10-fold cross-validation is used to evaluate the classi-
fication performance of all the methods by partitioning
the original dataset into nine folds of training subset
and one testing subset for evaluation. AUC and F1-
score (i.e., the harmonic mean of precision and recall)
are selected as the evaluation metrics due to their sen-
sitivity to class imbalance. The other commonly used
metrics such as accuracy, precision, recall are measured
as well for more performance observations in our ex-
periments. All the experiments are implemented using
MATLAB R2014a on a computer with Intel Core i7-
4700MQ 2.40 GHz CPU and 8.00GB RAM.

Table 6 shows the average classification performance
of AUC-LS-SVMs and the comparative methods after
10-fold cross validation on the public datasets. To see
if there are significant differences among the perfor-
mances of the proposed classifier and comparative meth-
ods over these datasets, we employ the Friedman rank-
ing test. From Tables 2 and 4, the null hypothesis that
all the methods perform the same in terms of accu-
racy (p=0.009804) and AUC (p=0.002187) on average
is rejected. Thus, a Holm post-hoc test is carried out
to compare AUC-LS-SVMs with the other two meth-
ods further. We set α = 0.05 as the level of confidence
in all cases. According to results from Tables 3 and
5, AUC-LS-SVMs significantly outperforms the tradi-
tional methods LS-SVMs and SVMs in terms of both
accuracy and AUC in our experiments. Hence, these re-
sults allow concluding that when model selection is per-
formed appropriately, our proposed classifier AUC-LS-
SVMs can indeed maximize AUC. Besides, the accuracy
results indicate that the proposed classifier AUC-LS-
SVMs can achieve better AUC without sacrificing clas-
sification accuracy. Moreover, the experimental results
show that the term RAUCLS in the objective function of
the proposed classifier does help improve the generaliza-
tion capability on the testing datasets compared to the
traditional LS-SVMs. In terms of precision and recall,
AUC-LS-SVMs achieves the highest precision values on
all the datasets except pima and svmguide3, and the
highest recall values on all the datasets except ILPD

and german. We then take a look at F1 score, which
incorporates precision and recalls equally. The experi-
mental results show that AUC-LS-SVMs still achieves
higher or at least comparable F1-score over different
datasets, showing a good prediction power on imbal-
anced datasets.

In general, we can see that AUC-LS-SVMs achieves
excellent classification performances on the public data-
sets with different imbalanced class distributions. We
believe that our proposed classifier distinguishes from
the comparative methods in two aspects. One is the
AUC-based objective function. The advantage of AUC-
LS-SVMs is mainly due to the direct use of the pro-
posed generalized AUC performance index RAUCLS as
a part of the objective function for training. Thus, we
can construct a reliable prediction model directly on the
imbalanced dataset instead of going through an addi-
tional data preprocessing step. The second aspect is the
fast leave-one-out cross validation for parameter tuning.
By using the proposed strategy, the parameter λ can be
tuned quickly and autonomously.

Table 2: Average rankings of AUC-LS-SVMs and
the comparative methods in terms of accuracy (p-
value=0.009804)

Methods Ranking
AUC-LS-SVMs 1.125

LS-SVMs 2.375
SVMs 2.5

Table 3: Holm post-hoc comparison results for AUC-
LS-SVMs and the other methods in terms of accuracy
with α = 0.05

i Methods z-value p-value Holm=α/i
2 SVMs 2.75 0.00596 0.025
1 LS-SVMs 2.5 0.012419 0.05

Table 4: Average rankings of AUC-LS-SVMs and
the comparative methods in terms of AUC (p-
value=0.002187)

Methods Ranking
AUC-LS-SVMs 1

LS-SVMs 2.625
SVMs 2.375
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Table 5: Holm post-hoc comparison results for AUC-
LS-SVMs and the other methods in terms of AUC with
α = 0.05

i Methods z-value p-value Holm=α/i
2 LS-SVMs 3.25 0.001154 0.025
1 SVMs 2.75 0.00596 0.05

6.2 Real-world prostate cancer dataset

A real-world prostate cancer dataset is used in this
study, which is retrieved from a TRUS-guided prostate
biopsy database in a hospital in Hong Kong. In to-
tal, there are 5899 patient records after TRUS-guided
prostate biopsy. The patient information include ’any
previous biopsy’, ’age’, ’PSA’, ’DRE finding’, ’DRE vol-
ume’, ’TRUS volume’, ’abnormal TRUS findings’, ’pathol-
ogy of TRUS’, and ’total gleason score’. Referring to the
ERSPC risk calculator [2] and consultations with local
urologists, we plan to build two prostate cancer diag-
nostic models using different groups of features. The
first model (i.e., model (1) in brevity) is built using the
features - age, PSA, DRE finding, TRUS volume and
abnormal TRUS finding, while the second model (i.e.,
model (2) in brevity) is built using the features - age,
PSA, DRE finding and DRE volume.

Both models target patients who just had their ini-
tial biopsy. The patients who previously had biopsies
before are excluded from this study. Case deletion is
adopted to remove the patient records with any miss-
ing value(s). After that, feature scaling is applied to
normalize the range of features into [0, 1]. The baseline
characteristics of the processed datasets for model (1)
and model (2) are presented in Tables 9 and 10, respec-
tively. The distribution of two classes under ’outcome
of biopsy’ is very imbalanced, where ’non-cancer or in-
significant cancer’ versus ’significant cancer’ is 5.9254:1
and 7.8874:1 in two cases, respectively. The normal
cases dominate over the cancer cases, although in the
clinical practice, it weighs more heavily on the detection
of cancer than non-cancer.

To solve such class imbalance problem, we apply the
proposed classifier AUC-LS-SVMs to build model (1)
and model (2) on the processed datasets, and further
evaluate and compare the performance with the tradi-
tional SVMs [13] and LS-SVMs [34]. The same param-
eter setting in Section 6.2 is used here for the proposed
and comparative methods. Tables 7 and 8 show the av-
erage classification performance of AUC-LS-SVMs and
the comparative methods after 10-fold cross validation
for model (1) and model (2), respectively.

The experimental results show that SVMs achieved
the highest accuracy (0.9377) and precision (0.8083)

among all the methods for model (2). However, the pro-
posed classifier AUC-LS-SVMs is superior to LS-SVMs
and SVMs for AUC and F1-score in both model (1) and
model (2). Here, it is important to remember that F1
score and AUC metrics are doing better than accuracy
for skewed datasets. Therefore, we can conclude that
in general, the proposed classifier AUC-LS-SVMs with
direct AUC optimization have an advantage over the
other methods in imbalanced prostate cancer detection.

7 Conclusions

Using pre-biopsy data to detect early prostate cancer
can avoid unnecessary biopsies and overtreatment of
low-grade prostate cancer. To construct a reliable pre-
diction model for early prostate cancer detection, SVMs
and their variants have been attracting more and more
attention in this field. This study proposes a new clas-
sifier called AUC-LS-SVMs to explicitly deal with the
class imbalance problem in prostate cancer detection.
AUC-LS-SVMs directly integrates the proposed gen-
eralized AUC index RAUCLS into the objective func-
tion of LS-SVMs and uses the proposed fast LOOCV
strategy to search for the best parameter λ in RAUCLS .
Empirical results demonstrate that the proposed clas-
sifier outperformed the traditional methods LS-SVMs
and SVMs for early prostate cancer detection. Exten-
sive experiments are conducted on public datasets to
confirm the efficacy of the proposed classifier further.

As stated in Section 4, AUC-LS-SVMs is compara-
tively time-consuming for prediction. In the future, we
plan to develop simplified and even on-line versions to
reduce the computational burden further. The proposed
classifier can also be extended to deal with imbalanced
multi-class classification, such as diagnosis of benign,
insignificant, and significant prostate cancer.
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Table 6: Evaluation on public datasets

Datasets Methods accuracy precision recall F score AUC

pima

AUC-LS-SVMs
training 0.8043±0.0086 0.7753±0.0063 0.6484±0.0224 0.7060±0.0145 0.8994±0.0094

testing 0.7884±0.0226 0.6807±0.0964 0.6279±0.0460 0.6510±0.0555 0.8483±0.0291

LS-SVMs
training 0.8407±0.0629 0.8286±0.0789 0.6911±0.1117 0.7524±0.0968 0.9063±0.0554

testing 0.7374±0.0439 0.6392±0.0735 0.5240±0.0630 0.5735±0.0567 0.8001±0.0532

SVMs
training 0.7873±0.0122 0.7230±0.0250 0.6274±0.0170 0.6717±0.0183 0.8569±0.0076

testing 0.7576±0.0245 0.6814±0.0614 0.6056±0.1088 0.6335±0.0573 0.8169±0.0238

ILPD

AUC-LS-SVMs
training 0.7475±0.0114 0.7548±0.0140 0.9623±0.0085 0.8459±0.0080 0.8063±0.0105

testing 0.7137±0.0453 0.7265±0.0430 0.9507±0.0372 0.8228±0.0312 0.7595±0.0283

LS-SVMs
training 0.8775±0.1259 0.8781±0.1245 0.9863±0.0194 0.9253±0.0757 0.9061±0.1050

testing 0.7063±0.0280 0.7222±0.0172 0.9562±0.0511 0.8222±0.0226 0.6454±0.0686

SVMs
training 0.7194±0.0064 0.7239±0.0191 0.9868±0.0416 0.8343±0.0060 0.7551±0.0190

testing 0.7022±0.0201 0.7124±0.0193 0.9786±0.0675 0.8229±0.0197 0.6721±0.0302

liver

AUC-LS-SVMs
training 0.7668±0.0210 0.7752±0.0245 0.6312±0.0480 0.6953±0.0368 0.8056±0.0239

testing 0.7192±0.0478 0.6743±0.0676 0.6216±0.0878 0.6449±0.0663 0.7467±0.0526

LS-SVMs
training 0.7905±0.0528 0.7969±0.0553 0.6749±0.0897 0.7299±0.0741 0.8470±0.0575

testing 0.6942±0.0434 0.6699±0.0866 0.5199±0.0645 0.5815±0.0534 0.7249±0.0500

SVMs
training 0.7349±0.0106 0.6900±0.0163 0.6446±0.0183 0.6664±0.0141 0.7780±0.0178

testing 0.6865±0.0122 0.6583±0.0535 0.6093±0.0402 0.6305±0.0223 0.7296±0.0325

haberman

AUC-LS-SVMs
training 0.7720±0.0185 0.6766±0.0302 0.3432±0.0161 0.4552±0.0181 0.7822±0.0109

testing 0.7804±0.0437 0.5600±0.0787 0.3509±0.0609 0.4268±0.0522 0.7050±0.0333

LS-SVMs
traning 0.8089±0.0653 0.7432±0.0991 0.4156±0.2058 0.5217±0.1777 0.8087±0.0752

testing 0.7185±0.0309 0.3923±0.1129 0.1883±0.0842 0.2452±0.0896 0.6700±0.0712

SVMs
training 0.7453±0.0199 N/A 0 N/A 0.6056±0.0409

testing 0.7120±0.0462 N/A 0 N/A 0.5424±0.0653

german

AUC-LS-SVMs
training 0.9977±0.0024 0.9982±0.0016 0.9994±0.0013 0.9988±0.0012 0.9999±1.2025e-04

testing 0.9600±0.0156 0.9676±0.0090 0.9917±0.0090 0.9795±0.0081 0.7741±0.0931

LS-SVMs
training 0.9783±0.0168 0.9782±0.0168 1±0 0.9889±0.0086 0.9834±0.0414

testing 0.9556±0.0113 0.9601±0.0116 0.9952±0.0080 0.9772±0.0059 0.7428±0.0746

SVMs
training 0.9609±0.0066 0.9609±0.0066 1±0 0.9800±0.0034 0.9241±0.0238

testing 0.9649±0.0153 0.9649±0.0153 1±0 0.9821±0.0080 0.7525±0.0681

australian

AUC-LS-SVMs
training 0.8855±0.0089 0.8453±0.0153 0.9086±0.0134 0.8756±0.0066 0.9436±0.0089

testing 0.8694±0.0424 0.8294±0.0544 0.8978±0.0446 0.8614±0.0412 0.9375±0.0299

LS-SVMs
training 0.8779±0.0266 0.8446±0.0471 0.8926±0.0338 0.8669±0.0263 0.9386±0.0210

testing 0.8448±0.0217 0.8135±0.0647 0.8587±0.0713 0.8310±0.0241 0.9185±0.0139

SVMs
training 0.8796±0.0138 0.8283±0.0254 0.9155±0.0080 0.8696±0.0152 0.9435±0.0082

testing 0.8656±0.0274 0.8267±0.0520 0.8936±0.0414 0.8576±0.0328 0.9181±0.0300

svmguide1

AUC-LS-SVMs
training 0.9737±0.0039 0.9823±0.0047 0.9773±0.0062 0.9797±0.0030 0.9959±6.5113e-04

testing 0.9643±0.0073 0.9714±0.0107 0.9725±0.0172 0.9718±0.0068 0.9952±0.0022

LS-SVMs
training 0.9852±0.0049 0.9864±0.0041 0.9906±0.0063 0.9885±0.0040 0.9987±4.8101e-04

testing 0.9522±0.0157 0.9565±0.0172 0.9699±0.0161 0.9630±0.0127 0.9890±0.0088

SVMs
training 0.9417±0.0078 0.9561±0.0073 0.9526±0.0066 0.9543±0.0064 0.9864±0.0026

testing 0.9516±0.0160 0.9703±0.0127 0.9563±0.0182 0.9632±0.0125 0.9904±0.0050

svmguide3

AUC-LS-SVMs
training 0.9439±0.0035 0.9977±0.0052 0.7649±0.0217 0.8658±0.0129 0.9866±0.0024

testing 0.8128±0.0300 0.6399±0.1008 0.4977±0.0650 0.5593±0.0780 0.8061±0.0300

LS-SVMs
training 0.8379±0.0267 0.8401±0.0524 0.3877±0.0987 0.5259±0.1025 0.8629±0.0357

testing 0.7936±0.0296 0.6923±0.1196 0.2640±0.0890 0.3723±0.0954 0.7404±0.0420

SVMs
training 0.7992±0.0145 0.7933±0.0515 0.1619±0.0796 0.2613±0.1063 0.8001±0.0125

testing 0.7893±0.0301 0.7912±0.1641 0.1456±0.1057 0.2299±0.1351 0.7727±0.0271
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Table 7: Evaluation on prostate cancer dataset - model (1)

Methods accuracy precision recall F1-score AUC

AUC-LS-SVMs training 0.8831±0.0099 0.8175±0.0424 0.3606±0.0901 0.4966±0.0957 0.9042±0.0105
testing 0.8831±0.0172 0.8453±0.0896 0.3898±0.0677 0.5328±0.0807 0.8936±0.0345

LS-SVMs training 0.9319±0.0092 0.9302±0.0299 0.6285±0.0284 0.7499±0.0254 0.9555±0.0074
testing 0.8768±0.0220 0.7523±0.1079 0.3968±0.0727 0.5145±0.0700 0.8443±0.0649

SVMs training 0.8603±0.0195 0.8627±0.2106 0.2666±0.1974 0.3441±0.1901 0.9084±0.0235
testing 0.8503±0.0372 0.7712±0.2804 0.2377±0.1950 0.2794±0.1444 0.8464±0.0791

Table 8: Evaluation on prostate cancer dataset - model (2)

Methods accuracy precision recall F1-score AUC

AUC-LS-SVMs training 0.9684±0.0047 0.9487±0.0595 0.6965±0.0990 0.7970±0.0410 0.9779±0.0062
testing 0.9273±0.0188 0.7225±0.2410 0.5233±0.1119 0.5834±0.1161 0.8679±0.0574

LS-SVMs training 0.9376±0.0062 0.9319±0.0436 0.4939±0.0452 0.6393±0.0409 0.9345±0.0147
testing 0.9240±0.0065 0.4924±0.2208 0.4207±0.0636 0.5467±0.0587 0.8525±0.0226

SVMs training 0.9501±0.0063 0.9092±0.0195 0.4539±0.0665 0.5915±0.0533 0.9186±0.0194
testing 0.9377±0.0116 0.8083±0.0550 0.3427±0.1262 0.4723±0.1280 0.8403±0.0732

Table 9: Baseline characteristics of the dataset for model (1)

Value Percentage
Total number of patients 3435
Number and percentage of patients with
PSA level (ng ml−1)
<4 339 9.87
4-10 1799 52.37
10.1-20 713 20.76
20.1-50 295 8.59
>50 289 8.41

PSA level (ng ml−1) 46.66±349.72
Age(year, mean±s.d.) 68±8
Estimated prostate volume on TRUS
(ml, mean±s.d.) 51.23±26.31
TRUS finding (number of patients)
Normal 3058 89.02
Abnormal 377 10.98

Outcome of biopsy
non-cancer or insignificant cancer 2939
significant cancer 496

Table 10: Baseline characteristics of the dataset for model (2)

Value Percentage
Total number of patients 1973
Number and percentage of patients with
PSA level (ng ml−1)
<4 114 5.78
4-10 1261 63.91
10.1-20 377 19.11
20.1-50 141 7.15
>50 80 4.05

PSA level (ng ml−1) 23.24±121.08
Age(year, mean±s.d.) 67±7
Estimated prostate volume on DRE
(ml, mean±s.d.) 45.88±16.59
DRE findings
normal 1717 87.02
abnormal 256 12.98

Outcome of biopsy
non-cancer or insignificant cancer 1751
significant cancer 222
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Appendix

Eq. (10) can be reformulated as

min
w,b,ξ

1

2
wTw +

γ

2

N∑
i=1

ξ2i+

C

2

∑
k∈N+

∑
l∈N−

(
λ−wT (ϕ(xk)− ϕ(xl))

)2
n+n−

s.t yi = w
Tϕ(xi) + b+ ξi, i = 1, 2, · · · , N

(N = n+ + n−)

(23)

To derive the dual problem by constructing the La-
grangian, we formulate the Lagrangian J for Eq. (23)

J =
1

2
w2+

C

2

∑
k∈N+

∑
l∈N−

(
λ−wT (ϕ(xk)− ϕ(xl))

)2
n+n−

+
γ

2

N∑
i=1

ξ2i +

N∑
i=1

αi(yi −wTϕ(xi)− b− ξi)

(24)

where αi = (α1, α2, ..., αN ) is the vector of Lagrangian
multipliers. The conditions for optimality are given by

∂J

∂w
= 0⇒ w + C

∑
k∈N+

∑
l∈N−

(
λ−wT

(
ϕ(xk)− ϕ(xl)

))
n+n−(

−
(
ϕ(xk)− ϕ(xl)

))
−

N∑
i=1

αixi = 0

⇒ w +
C

n+n−

∑
k∈N+

∑
l∈N−

(
ϕ(xl)− ϕ(xk)

)
(
λ−wT

(
ϕ(xk)− ϕ(xl)

))
−

N∑
i=1

αiϕ(xi) = 0

(25)

Since wT
(
ϕ(xk) − ϕ(xl)

)
is scalar, wT

(
ϕ(xk) −

ϕ(xl)
)
=
(
ϕ(xk) − ϕ(xl)

)T
w. We can further write

Eq. (25) into

∂J

∂w
= 0⇒ w +

λC

n+n−

∑
k∈N+

∑
l∈N−

(
ϕ(xl)− ϕ(xk)

)
+

C

n+n−

∑
k∈N+

∑
l∈N−

(
ϕ(xk)− ϕ(xl)

)(
ϕ(xk)

− ϕ(xl)
)T
w −

N∑
i=1

αiϕ(xi) = 0

⇒ w = H
( N∑
i=1

αiϕ(xi) +
λC

n+n−

∑
k∈N+

∑
l∈N−(

ϕ(xk)− ϕ(xl)
))

(26)

where H =
[
I + C

n+n−

∑
k∈N+

∑
l∈N−

(
ϕ(xk)−ϕ(xl)

)
(
ϕ(xk)−ϕ(xl)

)T ]−1, I is theN×N identity matrix and(
ϕ(xk)−ϕ(xl)

)(
ϕ(xk)−ϕ(xl)

)T is an N ×N matrix.

∂J

∂b
= 0 ⇒

N∑
i=1

αi = 0 (27)

∂J

∂ξi
= 0 ⇒αi = γξi (28)

∂J

∂αi
= 0 ⇒yi = wTϕ(xi) + b+ ξi (29)

According to Sherman-Morrison-Woodbury formula
[33], given an invertible (nonsingular) matrix A and
column vectors u and v, assuming 1 + vTA−1u 6= 0,
we have

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
(30)

In particular if A = I, we immediately have (I +

uvT )−1 = I − uvT

1+vTu
. By applying this formula to H,

we can rewrite H into

H = I − C

n+n−

∑
k∈N+

∑
l∈N−(

ϕ(xk)− ϕ(xl)
)(
ϕ(xk)− ϕ(xl)

)T[
1 + C

n+n−

∑
k∈N+

∑
l∈N−

(
ϕ(xk)− ϕ(xl)

)T (
ϕ(xk)− ϕ(xl)

)]
= I−∑

k∈N+

∑
j∈N−

(
ϕ(xk)− ϕ(xl)

)(
ϕ(xk)− ϕ(xl)

)T
n+n−

C +
∑
k∈N+

∑
l∈N−

(
k(xk,xk) + k(xl,xl)− 2k(xk,xl)

)
(31)

We notice that the denominator in Eq. (31) is a scalar.
If we use M to represent it, Eq. (31) can be simplified
into

H = I −
∑
k∈N+

∑
l∈N−

(
ϕ(xk)− ϕ(xl)

)(
ϕ(xk)− ϕ(xl)

)T
M

(32)

and accordingly Eq. (26) can be simplified into

w =
(
I − 1

M

∑
k∈N+

∑
l∈N−

(
ϕ(xk)− ϕ(xl)

)(
ϕ(xk)− ϕ(xl)

)T)
( N∑
i=1

αiϕ(xk) +
λC

n+n−

∑
k∈N+

∑
l∈N−

(
ϕ(xk)− ϕ(xl)

))
(33)
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By eliminating w and ξi, we can get the following
solution

yi = ϕT (xi)
(
I −

1

M

∑
k∈N+

∑
l∈N−

(
ϕ(xk)− ϕ(xl)

)(
ϕ(xk)− ϕ(xl)

)T)
( N∑
i=1

αiϕ(xi) +
λC

n+n−

∑
k∈N+

∑
l∈N−

(
ϕ(xk)− ϕ(xl)

))
+ b+

αi

γ

=
(
ϕT (xi)−

1

M

∑
k∈N+

∑
l∈N−

(
k(xi,xk)− k(xk,xl)

)(
ϕ(xk)−

ϕ(xl)
)T)( N∑

i=1

αiϕ(xi) +
λC

n+n−

∑
k∈N+

∑
l∈N−

(
ϕ(xk)− ϕ(xl)

))
+ b+

αi

γ

=

N∑
k=1

αk
[
k(xi,xk)−

1

M

∑
p∈N+

∑
l∈N−

(
k(xi,xp)− k(xi,xl)

)
(
k(xp,xk)− k(xl,xk)

)]
+

λC

n+n−

∑
k∈N+

∑
l∈N−

{(
k(xi,xk)−

k(xi,xl)
)
−

1

M

∑
p∈N+

∑
q∈N−

(
k(xi,xp)− k(xi,xq)

) ∑
k∈N+

∑
l∈N−(

k(xp,xk)− k(xp,xl)− k(xq,xk) + k(xq,xl)
)}

+ b+
αi

γ

(34)

We denote k(xi,xk) − 1
M

∑
p∈N+

∑
l∈N−

(
k(xi,xp) −

k(xi,xl)
)(
k(xp,xk)− k(xl,xk)

)
as k̃(xi,xk), and C

n+n−∑
k∈N+

∑
l∈N−

{(
k(xi,xk)− k(xi,xl)

)
− 1

M

∑
p∈N+∑

q∈N−
(
k(xi,xp)−k(xi,xq)

)∑
k∈N+

∑
l∈N−

(
k(xp,xk)

−k(xp,xl)−k(xq,xk)+k(xq,xl)
)}

as f(xi), therefore
we can rewrite Eq. (34) into

yi =

N∑
k=1

αkk̃(xi,xk) + λf(xi) + b+
αi
γ

(35)

We can further write the above linear equation in the
matrix form[
K̃+ I

γ 1

1T 0

] [
α

b

]
=

[
y − λf

0

]
(36)

where y = [y1; · · · ; yN ]T , 1 = [1; · · · ; 1], f = [f(x1); · · · ; f(xN )]T ,
and K̃ = (k̃(xi,xk))N×N .
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