Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103559
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorLin, Sen_US
dc.creatorPan, TLen_US
dc.creatorLam, WHKen_US
dc.creatorZhong, RXen_US
dc.creatorDe Schutter, Ben_US
dc.date.accessioned2023-12-20T07:14:55Z-
dc.date.available2023-12-20T07:14:55Z-
dc.identifier.issn1474-6670en_US
dc.identifier.urihttp://hdl.handle.net/10397/103559-
dc.language.isoenen_US
dc.publisherIFAC Secretariaten_US
dc.rights© 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.en_US
dc.rightsPosted with permission of the IFAC.en_US
dc.rightsThe following publication Lin, S., Pan, T. L., Lam, W. H. K., Zhong, R. X., & De Schutter, B. (2018). Stochastic link flow model for signalized traffic networks with uncertainty in demand. IFAC-PapersOnLine, 51(9), 458-463 is available at https://doi.org/10.1016/j.ifacol.2018.07.075.en_US
dc.subjectStochastic traffic modelen_US
dc.subjectTraffic signalsen_US
dc.subjectUrban traffic networken_US
dc.titleStochastic link flow model for signalized traffic networks with uncertainty in demanden_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage458en_US
dc.identifier.epage463en_US
dc.identifier.volume51en_US
dc.identifier.issue9en_US
dc.identifier.doi10.1016/j.ifacol.2018.07.075en_US
dcterms.abstractIn order to investigate the stochastic features in urban traffic dynamics, we propose a Stochastic Link Flow Model (SLFM) for signalized traffic networks with demand uncertainties. In the proposed model, the link traffic state is described using four different link state modes, and the probability for each link state mode is determined based on the stochastic link states. The SLFM model is expressed as a finite mixture approximation of the link state probabilities and the dynamic link flow models for all the four link state modes. Using data from microscopic traffic simulator SUMO, we illustrate that the proposed model can provide a reliable estimation of the link traffic states, and as well as good estimations on the link state uncertainties propagating within a signalized traffic network.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIFAC-PapersOnLine, 2018, v. 51, no. 9, p. 458-463en_US
dcterms.isPartOfIFAC-PapersOnLineen_US
dcterms.issued2018-
dc.identifier.eissn2405-8963en_US
dc.description.validate202312 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberCEE-2015-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Science Foundation of China; Beijing Natural Science Foundation; European COST Action TU1102; Research Institute for Sustainable Urban Development (RISUD) of The Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS19482882-
dc.description.oaCategoryPublisher permissionen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Pan_Stochastic_Link_Flow.pdf468.76 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

105
Last Week
0
Last month
Citations as of Nov 9, 2025

Downloads

35
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

10
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

12
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.