Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/103243
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estate-
dc.creatorJiang, Cen_US
dc.creatorGu, Yen_US
dc.creatorGuan, Wen_US
dc.creatorZheng, Jen_US
dc.creatorNi, Men_US
dc.creatorZhong, Zen_US
dc.date.accessioned2023-12-11T00:32:35Z-
dc.date.available2023-12-11T00:32:35Z-
dc.identifier.issn0360-3199en_US
dc.identifier.urihttp://hdl.handle.net/10397/103243-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.en_US
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Jiang, C., Gu, Y., Guan, W., Zheng, J., Ni, M., & Zhong, Z. (2020). 3D thermo-electro-chemo-mechanical coupled modeling of solid oxide fuel cell with double-sided cathodes. International Journal of Hydrogen Energy, 45(1), 904-915 is available at https://doi.org/10.1016/j.ijhydene.2019.10.139.en_US
dc.subject1st principal stressen_US
dc.subjectMulti-physics modelen_US
dc.subjectSolid oxide fuel cell (SOFC)en_US
dc.subjectTemperature gradienten_US
dc.subjectThermal stressen_US
dc.title3D thermo-electro-chemo-mechanical coupled modeling of solid oxide fuel cell with double-sided cathodesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage904en_US
dc.identifier.epage915en_US
dc.identifier.volume45en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1016/j.ijhydene.2019.10.139en_US
dcterms.abstractA solid oxide fuel cell based on double-sided cathodes is developed in our group, showing special properties and many advantages under some harsh conditions. To optimize the cell further, a thermo-electro-chemo-mechanical coupled 3D model is developed to simulate the distributions of temperature, current density, fuel gas and thermal stress under different voltages. The numerical results indicate that the temperature distribution, current, fuel gases and thermal stress is non-uniform in the cell at different voltages. The distribution of thermal stress in the electrolyte is also non-uniform because of the un-even electrochemical reaction and convective heat transfer. Furthermore, the result shows that about 47%~54% of maximum 1st principal stress in SOFC is caused by the mismatch of coefficients of thermal expansion (CTEs) among materials, while the other part of the maximum 1st principal stress is mainly caused by temperature gradient.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInternational journal of hydrogen energy, 1 Jan. 2020, v. 45, no. 1, p. 904-915en_US
dcterms.isPartOfInternational journal of hydrogen energyen_US
dcterms.issued2020-01-01-
dc.identifier.scopus2-s2.0-85075462856-
dc.identifier.eissn1879-3487en_US
dc.description.validate202312 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberBRE-0384-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS24702413-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Ni_3D_Coupled_Modeling.pdfPre-Published version1.17 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

97
Last Week
0
Last month
Citations as of Nov 30, 2025

Downloads

136
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

54
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

42
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.