Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102944
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.creatorChu, YJen_US
dc.creatorMak, CMen_US
dc.date.accessioned2023-11-17T02:58:56Z-
dc.date.available2023-11-17T02:58:56Z-
dc.identifier.issn0165-1684en_US
dc.identifier.urihttp://hdl.handle.net/10397/102944-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2017 Elsevier B.V. All rights reserved.en_US
dc.rights© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Chu, Y. J., & Mak, C. M. (2017). A variable forgetting factor diffusion recursive least squares algorithm for distributed estimation. Signal Processing, 140, 219-225 is available at https://doi.org/10.1016/j.sigpro.2017.05.010.en_US
dc.subjectAdaptive networksen_US
dc.subjectDiffusion RLSen_US
dc.subjectMSD analysisen_US
dc.subjectVFFen_US
dc.titleA variable forgetting factor diffusion recursive least squares algorithm for distributed estimationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage219en_US
dc.identifier.epage225en_US
dc.identifier.volume140en_US
dc.identifier.doi10.1016/j.sigpro.2017.05.010en_US
dcterms.abstractDistributed recursive least squares (RLS) algorithms have superior convergence properties compared to the least mean squares (LMS) counterpart. However, with a fixed forgetting factor (FF), they are not suitable for tracking time-varying (TV) parameters. This paper proposes a novel diffusion variable FF RLS (Diff-VFF-RLS) algorithm based on a local polynomial modeling (LPM) of the unknown TV system. The diffusion RLS solution is derived analytically such that the estimation deviation from the true value is investigated. Based on the analysis and the LPM of the TV system, a new optimal VFF formula that tries to minimize the estimation deviation is obtained. Simulations are conducted to verify the theoretical analysis in terms of the steady-state mean square deviation (MSD) and the VFF formula. Results also show that the convergence and tracking performance of the proposed algorithm compares favorably with conventional ones.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSignal processing, Nov. 2017, v. 140, p. 219-225en_US
dcterms.isPartOfSignal processingen_US
dcterms.issued2017-11-
dc.identifier.scopus2-s2.0-85019973532-
dc.identifier.eissn1872-7557en_US
dc.description.validate202310 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberBEEE-0591-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6749704-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Mak_Variable_Forgetting_Factor.pdfPre-Published version941.49 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

54
Citations as of May 11, 2025

Downloads

76
Citations as of May 11, 2025

SCOPUSTM   
Citations

33
Citations as of May 22, 2025

WEB OF SCIENCETM
Citations

30
Citations as of May 22, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.