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Abstract—Distributed recursive least squares (RLS) algorithms have superior convergence properties compared to the

least mean squares (LMS) counterpart. However, with a fixed forgetting factor (FF), they are not suitable for tracking 

time-varying (TV) parameters. This paper proposes a novel diffusion variable FF RLS (Diff-VFF-RLS) algorithm based 

on a local polynomial modeling (LPM) of the unknown TV system. The diffusion RLS solution is derived analytically such 

that the estimation deviation from the true value is investigated. Based on the analysis and the LPM of the TV system, a 

new optimal VFF formula that tries to minimize the estimation deviation is obtained. Simulations are conducted to verify 

the theoretical analysis in terms of the steady-state mean square deviation (MSD) and the VFF formula. Results also show 

that the convergence and tracking performance of the proposed algorithm compares favorably with conventional ones. 

Keywords—Adaptive networks, diffusion RLS, MSD analysis, and VFF. 

I. INTRODUCTION

Distributed estimation over ad hoc adaptive networks is an attractive and challenging problem, where a collection of 

networked nodes can interact locally and adapt to track parameters of interest in a collaborative way. Much attention 

has been paid to distributed strategies and cooperation policies (combination weights) of adaptive networks [1]. Three 

frequently used strategies are based on the incremental [2][3], consensus [4], and diffusion [5]-[9] techniques. 

Diffusion strategies are particularly prominent due to their improved robustness and enlarged stable region [1]. We 

hence focus on this class of strategies in the rest of the paper. 

Algorithms based on diffusion strategies update the estimate at each node in the network mainly in two steps [1]: 
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adaptation and combination. According to the order of the two steps, there are two different diffusion strategies called 

the adapt-then-combine (ATC) or the combine-then-adapt (CTA) diffusion. Current research has been focusing on the 

combination part that aims to improve estimation accuracy. A common choice for the combination weights is 

Metropolis rules [4]. A pioneer work [5] for the diffusion recursive least squares (RLS) algorithm seeks combination 

weights that minimize the estimation deviation through convex optimization. A similar rule for the diffusion least mean 

squares (LMS) algorithm [7] puts more weights to nodes that are well connected and less affected by noises [10]. 

As an alternative to the research on combination policy, research on adaptation develops techniques that accelerate 

the convergence and tracking capability for a given network. A variety of diffusion variable step-size (VSS) LMS-type 

algorithms have been proposed [11]-[13] that employ larger step-sizes to have fast rate when the algorithm is far from 

convergence while smaller ones when the algorithm is close to convergence. They can be derived from different 

optimization criteria and differ from the measure of convergence used. For the RLS-type algorithms [14]-[16], they 

usually achieve fast convergence and small mean square error (MSE) in stationary environment if a large forgetting 

factor (FF) is used; while in nonstationary environment with time-varying (TV) system parameters, a relatively small 

FF is required to facilitate fast parameter tracking. Thus, the FF needs to be made variable for TV systems. A number of 

variable FF (VFF) techniques [17]-[20] have been proposed for the single node estimation problems. For distributed 

RLS algorithms, however, only a few work that focuses on adaptation schemes has been conducted. It is probably due 

to the difficulty in understanding how the topology of adaptive networks that allows nodes to interact within the 

neighborhood affects the performance of the distributed adaptive algorithms. In stationary environments, a detailed 

analysis in terms of mean and mean square convergence performance has been carried out and a diffusion VFF RLS 

(Diff-VFF-RLS) algorithm, called the ATC-LCT-RLS algorithm, has been derived in a conference paper [21]. 

This paper aims to derive a new VFF version of the Diff-RLS algorithm, which has not been widely-discussed in the 

current literature. To this end, we start from finding an analytical expression for the solution to the Diff-RLS algorithm 

and discuss conditions for the solution to be unbiased from the true value in Section II.B. Based on the solution and a 

local polynomial (LP) modeling of the unknown system [20], the mean square deviation (MSD) of the Diff-RLS 

algorithm in TV environments is derived in Section II.C. An analytical formula of an optimal FF is hence obtained by 

balancing the bias and variance terms in MSD. The underlying mechanism of the combination strategy that improves 

the estimation performance of adaptive networks is illustrated using a simplified case at the end of Section II.C. The 
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validity of the theoretical analysis and performance of the proposed ATC-VFF-RLS algorithm is examined in Section 

III and conclusions are drawn in Section IV. A summary of important symbols has been listed in Table I. 

Overall, the main contribution of this paper is the proposed ATC-VFF-RLS algorithm with improved convergence 

and tracking capability, which is derived from the MSD analysis of the Diff-RLS algorithm in TV environments. The 

algorithm is different from the classical work [5] in that it deals with the tracking problems of the conventional 

Diff-RLS algorithm in [5]. Although similar assumptions have been used, the performance analysis for Diff-RLS 

algorithms in TV environments is new and different from [5]. The main differences include: 1) an analytical solution to 

the Diff-RLS algorithm is obtained instead of the mean convergence analysis in [5]; 2) the MSD in TV environments is 

derived from the analytical solution directly rather than the mean square performance analysis for constant systems [5]; 

and 3) conditions for an unbiased RLS solution and the optimal FF formula are not clarified in [5]. The current work is 

also different from our previous paper [20] which involves the LP modeling, since the adaptive network allows 

gradients and estimates combination within the neighborhood, which makes the performance analysis completely 

different from and much more complicated than that for the single node RLS algorithm in [20]. 

II. THE DIFF-VFF-RLS ALGORITHM 

A. Review of the ATC-RLS Algorithm 

We consider a network of K connected nodes, labeled k = 1, 2 … K. The neighborhood of node k is denoted by kN  

and is connected to k by an edge. Any two neighboring nodes have the ability to share information through the edge. 

The kth node collects data { )(ndk , )(nxk } that satisfy the linear model with unknown system vector )(nh  of length L: 

)()()()( nnnnd kk
T

k η+= xh  (1) 

where T
kkk Lnxnxn )]1(),...,([)( +−=x  is the input vector, and )(nkη  is the additive noise independent of { )(nxk } and 

)(nh . The objective of the network is to estimate the TV system )(nh  by minimizing the LS cost function 

∑∑ =−= −

K

k k
n

Li in ien 1
2

1 )()(minarg λ
w

 (2) 

where )()()( iidie k
T

kk xw−= , and )(nin−λ  is the weight (at time index n) of square errors (at time index i). )(nin−λ  serves 

as an exponential window since it decreases exponentially towards past data, and is calculated recursively by using a 

FF λ  satisfying 10 <<< λ , i.e. )1()( 1 −= −−− nn inin λλλ  with 1)(0 =nλ . λ  can be made variable at each time index n, i.e. 

the VFF )(nλ , for a better tracking. To address problems in (2), an ATC-type strategy is developed [5] and takes the 
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form as listed in Table II. The local estimate )(nkψ  at node k shares the neighboring gradients through a positive 

weighting coefficient lkc  from node kl N∈  as shown in (3a) in Table II. The cluster averaged estimate, )(nkw , 

combines the local solutions over kl N∈  using weights lka  as shown in (4) in Table II. The nonnegative scalars { lkc , 

lka } are selected such that }{ lkc=C  is right stochastic and }{ lka=A  is left stochastic [1]. (3)(4) 

B. Solution to the ATC-RLS Algorithm 

To make the analysis tractable, we use kxkx
n

Li
T
kkinnkXn

LniiEnnE _1
1

_1
1

1_
2)]()([)(lim)]([lim RRxxR λλ

λλ −−
−

−= −∞→∞→
≈== +−∑  [22], which 

is based on the fact that the input signal is stationary and )]()([ iiE T
kk xx = kx _R . Then the assumption holds for large n 

( ) 1
1 _

1
1 _

1 ))(()(])()()([lim)]([lim −
=

−
=

−

∞→∞→
∑∑ −1=== K

j jxjk
K

j jXjkk
T

nkn
ccnnnEnE RRΛP λXX 1)( -

k
Rλ−1=  (5) 

where ( ) 1)()()()( −= nnnn k
T

k XX ΛP  is a concise expression for the inverse of the cluster averaged covariance matrix, and 

the notations such as )(nX  and )(nkΛ  have been defined in Table I. Eq. (5) is in consistency with the result in [5]. 

Under the assumption (5), the update for )(nkP  in (3b) is unnecessary such that (3a) can be expressed as 

)]1()()()[()()1()1( )1()1()( −−+−=− −− nnndnncnn l
k

T
lllklk

l
k

l
k ψxxPψψ  for l =1,…,K, where )1()( −nl

kψ  is the adaptive filter for the lth 

loop during the incremental update with )1()1()0( −=− nn kk wψ  and )1()( )( −= nn K
kk ψψ . Summing (3a) over l, we have 

)()()()1()( nnnnn kk
T

kkk eCXPwψ +−=  (6) 

where the lth element of )(nke  (K×1) reads )1()()()( )1(
, −−= − nnndne l

k
T
lllk ψx . To further relates the cluster averaged 

estimate )1( −nkw  to the update of the local estimate )(nkψ , we use )1()1()1( −=−− nn k
l

k wψ  for l = 1,…, K. Hence 

)()()()1()]1()()([)()()1()( nnnnnnnnnnn k
T

kkkk
T

kkk dCXPwwXdCXPwψ +−=−−+−= λ  (7) 

where T
K ndndn )](),...,([)( 1=d  (K×1), T

K nnn )](... )([)( 1 xxX =  (K×L), and we have used the fact +−= −− )1()( 11 nn kk PP λ  

)()( nn k
T XCX  [5] such that under the assumption (5) )1()]()()([)1()()( 1 −+=−− nnnnnnn kk

T
kkkk wXCXPwPP λ . 

Substituting (7) into (4), the update for )(nkw  becomes 

.)]()()()1()1()()2([
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1 11
2

1

∑ ∑∑
∑

= ==

=

+−−+−=

+−=
K

l l
T

l
K

j j
T

jjl
K

j jjllk

K

l l
T

lllkk

nnnnnnanaa

nnnnan

dCXPdCXPw

dCXPww

λλ

λ
 (8) 

It can be seen from (8) that )(nkw  combines )()()(])[( 1 iinn l
T

llk
in

in dCXPA −+
−λ  over kl N∈  for 1−= Li ,…,n, where lk][⋅  

indicates the (lk)th entry of a matrix, and the other terms vanish as ∞→n . Then, the solution to the Diff-RLS finds 
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∑=
= K

l lk
T

lk nnnnn 1 )()()()()( dX ΛPw  (9) 

where )(nlkΛ  is a diagonal matrix of order ( 2+− Ln )K, i.e., }])[(,...,])[(,]{[diag)( 2
1

2
1 llk

Ln
Lnllkllklk nnn CACACAΛ +−
+−= λλ  

and )}1(),...,({col)( −= Lnn ddd  (( 2+− Ln )K×1) is the output vector. 

Note the nonnegative combination matrix A , which satisfies TT 1A1 =  with 1  a vector of unity entries [1], is 

irreducible and aperiodic such that A  converges to a unique matrix as time progresses, i.e. 

BA =
∞→

][lim n

n
E , where TT 1B1 = . (10) 

Under the condition (10), which is in consistency with that for Diff-LMS algorithms [23], (9) becomes 

∑=

∞→

= K

l l
T

llk

n

k nnnnn 1 )()()()(][)( dX ΛPBw . (11) 

Eq. (11) shows that the Diff-RLS solution is unbiased to a time-invariant system 0)( hh =n , where the desired signal 

can be written as 0)()( hnn Xd = . In the rest of the paper, we carry out the MSD analysis based on (11). 

C. Estimation Deviation Analysis 

To start with, we assume that the system vector of length L is continuous and differentiable. It then admits a local first 

order polynomial expansion at time tn [20], which reads 

)())(()()( )1(
!1

1
nmnmnnm ttttttt −+−+= rhhh  (12) 

where mt  belongs to a closed neighborhood of nt , )()1(
nth  is the derivative of )(th  at nt , and )( nm tt −r  is the remainder 

of )( nm tto − . )(th  is deterministic while both )()1(
nth  and )( nm tt −r  are Lth-order random vectors and are assumed to be 

wide-sense stationary processes inside the neighborhood. Here, the channel coefficients are modeled locally as a 

first-order polynomial with additional stochastic variations. Substituting (12) into (1) with sn nTt = , we have 

)()()))(()()((
)()()()(

)1( mmnmnnm
mmmmd

kk
T
k

k
T
kk

ξη
η

++−+=

+=

hhx
hx

 (13) 

where the time index indicates digital signals, e.g. )(nh  is short for )( snTh  with sT  the sampling period, and =)(mkξ  

)()( nmmT
k −rx . The random vector )()()( )1()1()1( nnn hhh δ+=  such that )]([)( )1()1( nEn hh =  and )()1( nhδ  are, respectively, 

the mean and variance of )()1( nh . Then, the observed signal vector can be expressed as 

)()()()()()()()( )1( nnnnnnnn ηξ +++= hDh XXd τ  (14) 

where })1(,...,1,0{diag)( KKK Lnn IIID +−−−=τ  is a diagonal matrix with KI  the identity matrix of order K, 
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)}1(),...,({col)( −= Lnn ξξξ  and )}1(),...,({col)( −= Lnn ηηη  are, respectively, the residue and background noise vectors 

with T
K nnn )](),...,([)( 1 ξξ=ξ  (K×1) and )(nη T

K nn )](),...,([ 1 ηη=  (K×1). 

Substituting (14) into (11) leads to a Diff-RLS solution: 

( )))()()(()()()()()(][)()( 1
)1(

_ nnnnnnnnnn l
T

l
K

l lllkk ηξ +++= ∑ =
ΛPhRPBhw Xτ  (15) 

where )()()()()(_ nnnnn l
T

l XX ττ DΛR = . Since the remainder )( nm −r  is assumed to be zero-mean and independent of 

the input [20], the expectation between )(nX  and )(nξ  is zero. Consequently,  

∑=
+= K

l lllkk nnnnnE 1
)1(

_ )()()(][)()]([ hRPBhw τ . (16) 

It can be seen that if )()1( nh = 0, the optimal LS solution is identical to the system coefficients due to the property of the 

combination matrix (10). Then, we analyze the deviation of )(nkw  from )(nh , i.e. 

)]}([)({)}()]([{)()( nEnnnEnn kkkk wwhwhw −+−=− . (17) 

The term in the first brackets corresponds to bias while the latter corresponds to variance. From (17), the MSD finds 

].||)]([)([||||)()]([||]||)()([|| 2
2

2
2

2
2_ nEnEnnEnnEJ kkkkkMSD wwhwhw −+−=−=  (18) 

Using (15), (16), ll n R2
_ )1()( −−−= λτR  according to Appendix A of [22], and the assumption in (5), we have 

                                    )()(][)()]([ )1(
1

1
1

)1(
1

1 nnnnE K

l lkk hhBhw λλ −=− −=−=− ∑  (19) 

∑=− ++−=− K

l l
T

llkkk nnnnnnnEn 1
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1
1 ))()()(()()(][)()]([)( ηξΛPBhww Xδλ  (20) 

For the variance term (20), we further have ))()()(][][()1/()])([)(var( 1 1
22 ∑ ∑= =
+−=− K

i

K

j jijijkikhkk nnnTrnEn PPBBww Rλσδ , 

where ]||][[|| 2)1(2 nEh hδσδ = , lXljli
K

l llij cc _1
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)]([ 2 nE lη  and )]([ 22 nE ll ξσξ =  are the variances of system and model noises at the lth node. Consequently, 
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i

K

j
-K

l lxljlil
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ijkikk j
ccTrT RR RBB σ  with 222

lll ξη σσσ +=Σ  provides information on signal to noise ratio 

(SNR) and is irrelative to FF, and 22)1(2 ||)(||)( hh nn δσσ += h  is the system variance. To minimize (2), one takes the 

derivative of )(1 _
1 nJJ K

k kMSDKMSD ∑ =
=  and let it equal to zero to get 
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)( λ
σ

λ −1
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nT h  (22) 

where ∑ =
= K

k kK TT 1
1 . To proceed further, we let λ

λµ −1
+1= . Then, (22) reduces to )(/2)1( 22 nT hσµµ =+ . For moderate and 

large values of λ , say, 0.5< λ <1, µ  satisfies µ >>1 and we can use the assumption 1+µ µ≈  for computational 
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efficiency [20]. Under this assumption, ( )3
1

)(/2 2 nT hσµ =  and the optimal FF is determined as 

0  if  ),1/()1( >+−= optopt λµµλ . (23) 

Then, a VFF )(nλ  can be calculated from (23) at each time index n, i.e. 

( ) ( ) 0)(  if  ],1)(/2/[]1)(/2[)( 3
1

3
1

22 >+−= nnTnTn hh λσσλ . (24) 

In (24), the estimation of kT  is computationally consuming and should be simplified. We hence assume that the 

weighted noise variance lilc
2
Σσ  at neighboring nodes is close to each other [10] and equal to ∑= Σ= K

l lilKiW c1
212

_ σσ . Then, 

kT )][(][ 1
12

_1 ∑∑ ==
= K

i
-

iikiW
K

j jkTr RBB σ , where 1-
iR  can be estimated by means of )(niP , i.e. ∑=

≅ n

ii
-

i nn 0
1 )()( λPR . This 

process needs )( 2KLO  times of multiplications. Since )(2 nhσ  and )(2 nlΣσ  can be estimated by using a fixed FF [20] that 

is computationally efficient compared to the calculation of kT , the multiplication required by (24) is )( 22LKO , which is 

in the same order of the Diff-RLS algorithm. The arithmetic complexity of the propose algorithm is listed in Table III. 

It should be mentioned that although (24) is derived from modeling the differentiable system as a LP, the proposed VFF 

scheme can also accelerate the tracking speed of Diff-RLS algorithms significantly for sudden change systems due to 

the on-line estimation methods for noise variances. It has been shown in simulation results. 

We now discuss a special case when both noise variances and input covariance matrices are the same for each node: 

22
ηη σσ =l , 22

ξξ σσ =l , xlx RR =_ , for l = 1,2,…,K. (25) 

In this case, Tk reduces to )( 12 -
xkk TrT RΣ= σρ  and ∑ ∑ ∑= = =

= K

i

K

j

K

l ljlijkikk cc1 1 1 )(][][ BBρ . It can be seen that kρ  is a constant 

smaller than 1, indicating that SNR at the kth node is increased by using the diffusion strategy. This also explains the 

improved performance of distributed estimation. 

III. SIMULATION RESULTS 

In this section, we evaluate the proposed ATC-VFF-RLS algorithm and its performance analysis. All results are 

obtained by averaging 50 Monte-Carlo simulations if not specified. 

A. Evaluation of VFF Formula for Random Walk Model 

The proposed VFF formula in (23) is evaluated by the identification of a random walk system: )()()1( nnn δhh +=+ , 

where )(nδ  is a zero-mean white Gaussian random vector with covariance matrix 4×10-5I10 and the initial value of the 

channel is ]1,...,1,1,1[0 −−=h  of length L = 10. The measurements are generated according to (1), where )(nxk  is a 
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first-order auto-regressive (AR) process )()(9.0)1( ngnxnx kkk +=+  with )(ngk  a zero-mean Gaussian process. The 

network has a total of K = 5 nodes. The variances of { )(nxk } at each node are set to 1, 1, 0.5, 0.5 and 2. Metropolis 

weights [4] are used for both the selection matrix C and the combination matrix A. The variance of noises are selected 

so as to achieve an averaged SNR of 0, 10 and 20 dB. 

ATC-RLS algorithms with different but fixed FF values in the range [0.5, 0.999] are examined. The simulated MSD 

curves are compared with theoretical predictions in Fig. 1. It can be seen that the simulated and theoretical results for 

MSD are in good agreement. It also shows that MSD is slightly overestimated for large FFs since the approximations 

for covariance matrices are used in (5), but it does not affect the selection of the optimal FF significantly. Both 

simulated and theoretical results illustrate that the optimal FF decreases slightly with the SNR. It indicates how the FF 

balances between the tracking speed and estimation accuracy in noisy environments. Next, we examine the 

performance of the VFF formula with noise variance mismatches, where the true variance ratio Tb h /2σ=  is replaced 

by the estimated values Tb h
ˆ/ˆˆ 2σ= . The predicted MSDs at the variance ratios =b̂ 10 b , 0.1 b  are marked by ‘Δ’ in Fig. 

1. The results show that the FF formula is not particularly sensitive to variance mismatches. If noise variance 

information is not exactly known in practical applications, (24) can provide a good reference for FF selection. 

B. Evaluation of the ATC-VFF-RLS Algorithm 

In this experiment, a larger network with K = 20 nodes is considered. Metropolis weights are also used for the 

selection and the combination matrices. The system to be identified also follows a random walk model with the initial 

value 0h , and it has a sudden jump to ]1,...,1,1[1 =h  of the same length at the 800th sample. The covariance matrix for 

this random walk process is also 4×10-5I10. The averaged SNR is set to 0, 10 and 20 dB. AR sequences are also used as 

inputs to excite the system, i.e. =+ )1(nxk )()(5.0 ngnx kk +  and the input variances at each node rang from 0.5 to 2. The 

algorithms under test include ATC-LMS in [6], ATC-VSS-LMS in [13], which outperforms other VSS Diff-LMS 

algorithms, ATC-RLS in [5], and ATC-LCT-RLS in [21]. 

The step-size for ATC-LMS is set to 0.02 while the FF for ATC-RLS is set to 0.98. Since it is difficult to choose 

parameters so as to let the two algorithms converge to a similar steady-state MSD in TV environment, we just follow a 

selection rule for time-invariant systems. The user parameters for ATC-LCT-RLS are selected as suggested in [21] 

except that the upper and lower bounds of the FF are tuned so as to provide the best performance at SNR = 0 dB. For the 



9 
 

proposed ATC-VFF-RLS, we use the estimated input and noise variances as suggested in [20] for the calculation of the 

FF (24). The simulation results are shown in Fig. 2. It can be seen that ATC-RLS has a much faster convergence than 

ATC-LMS algorithm. However, the tracking capability of ATC-RLS is even worse than its LMS counterpart. The 

ATC-VSS-LMS algorithm has significantly improved convergence and tracking performance over its fixed step-size 

version, especially at higher SNRs. The performance of the ATC-LCT-RLS algorithm is comparable with 

ATC-VFF-RLS at SNR = 0 dB, but is slightly affected by the change of noise variances. The proposed ATC-VFF-RLS 

algorithm in each case converges faster to a much lower steady-state MSD than the ATC-LCT-RLS at the cost of a 

higher complexity for the calculation of FFs, a comparison of which is presented in Table III. To further examine the 

VFF strategies of the two VFF diffusion RLS algorithms, the FF curves for ATC-LCT-RLS and ATC-VFF-RLS are 

shown in Fig. 3. It can be seen that, in time-varying systems, the proposed VFF formula (24) can converge quickly to an 

appropriate value so that faster convergence rate and smaller estimation deviation can be achieved. 

IV. CONCLUSION 

A new VFF diffusion RLS algorithm has been presented that is derived from the MSD performance analysis of the 

Diff-RLS algorithm for channels whose coefficients are modeled by LP. Simulations show that the theoretical and 

experimental results are in good agreement with each other. Comparison with other diffusion algorithms illustrates the 

improved convergence and tracking performance of the proposed algorithm. 
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TABLE I  SUMMARY OF IMPORTANT SYMBOLS (IN ORDER OF APPEARANCE IN THE PAPER) 
Eq. (1):  K Number of nodes 

  {dk(n), xk(n), )(nkη } Desired, input, and noise signals received at the kth node 
  h(n) Unknown system vector of length L 
  L Length of h(n) and adaptive filters 
 )(nkx  T

kk Lnxnx )]1(),...,([ +−= , input vector for the kth node of length L 

Eq. (2): λ  or )(nλ  Forgetting factor or variable forgetting factor 
 )(nin−λ  )1(1 −= −− ninλλ , weight (at time index n) of square errors (at time index i) 

Eq. (3): )(nkψ  Local estimate of the unknown system of length L 
  C ={clk} (K×K), selection matrix which is right stochastic 

Eq. (4): )(nkw  Cluster averaged estimate of the unknown system of length L 
  A ={alk} (K×K), combination matrix which is left stochastic 

Eq. (5): )(_ nkXR  ∑ −= −= n

Li
T
kkin iiEn1 )]()([)( xxλ , weighted input covariance matrix at node k 

 kx _R  )]()([ iiE T
kk xx= , input covariance matrix at node k 

 
kR  ∑ =

= K

j jxjkc1 _R , cluster averaged input covariance matrix at node k 

 )(nkP  = ( ) 1)()()( −nnn k
T XX Λ , the inverse of cluster averaged input covariance matrix at k 

  col{U1,…,UN} A column of N elements with the nth element equal to Un 
 )(nX  T

K nn )](... )([ 1 xx=  (K×L), input vector of all nodes at time index n 
 )(nX  )}1(),...,({col −= Ln XX  ((n-L+2)K×L), input signal matrix 
 kC  },...,,diag{ 21 Kkkk ccc= , a diagonal matrix of order K 

 )(nkΛ  })(,...,)(,{diag 11 kLnkk nn CCC +−= λλ , a diagonal matrix of order ( 2+− Ln )K 

Eq. (7): )(nd  T
K ndnd )](),...,([ 1=  (K×1), desired signal vector at time index n 

Eq. (9): )(nd  )}1(),...,({col −= Ln dd  (( 2+− Ln )K)×1, desired signal vector 
 

)(nlkΛ  }])[(,...,])[(,]{[diag 2
1

2
1 llk

Ln
Lnllkllk nn CACACA +−
+−= λλ , a diagonal matrix of order 

( 2+− Ln )K 
Eq. (12) 
or (13): )()1(

nth  or )()1( nh  )()( )1()1( nn hh δ+= , first order derivative of the unknown system with 

)]([)( )1()1( nEn hh =  and )()1( nhδ , respectively, the mean and variance of )()1( nh  
Eq. (14): )(nτD  })1(,...,1,0{diag KKK Ln III +−−−= , a diagonal matrix of order ( 2+− Ln )K 

 
)(nξ  

)}1(),...,({col −= Ln ξξ  (( 2+− Ln )K)×1, modeling residue vector with 
T

K nnn )](),...,([)( 1 ξξ=ξ  
 

)(nη  
)}1(),...,({col −= Ln ηη  (( 2+− Ln )K)×1, background noise vector with 

)(nη T
K nn )](),...,([ 1 ηη=  

Eq. (15): )(_ nlτR  )()()()( nnnn l
T XX τDΛ=  (L×L) 

Eq. (20): 
lX _R̂  lx

n

Lm
T
llmnn

mmn _1
1

1
2

2)()()(lim Rxx
λ

λ
−−= −∞→

== ∑  

 
ijR  

lXljli
K

l ll cc _1
22 ˆ)( R∑=

+= ξη σσ  

 2
hδσ  ]||][[|| 2)1( nE hδ= , variance of )()1( nh  

 2
lησ  )]([ 2 nE lη= , variance of the background noise 

 2
lξσ  )]([ 2 nE lξ= , variance of the modeling residue 

Eq. (21): )(2 nhσ  22)1( ||)(|| hn δσ+= h , variance of the unknown system 

 2
lΣσ  22

ll ξη σσ +=  
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TABLE II  DIFFUSION ATC-RLS STRATEGY 
Initialization for node k: 

 Lk IP δ=)0( , with δ  a small positive constant; 
0=)0(kw  is a null vector. 

Update: 

 
Given )1()( −= nn kk wψ , )1()()( 1 −= − nnn kk PP λ  
Adaptation at time n for kl N∈ : 

 ))()()((
)()()(1

)()()()( nnnd
nnnc

nncnn k
T
ll

lk
T
llk

lklk
kk ψx

xPx
xPψψ −

+
+←  (3a) 

 )()()(1
)()()()()()(

nnnc
nnnncnn

lk
T
llk

k
T
llklk

kk xPx
PxxPPP

+
−←  (3b) 

 End of l 
Combination: 

 ∑∈
=

kl llkk nan N )()( ψw  (4) 
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TABLE III  ARITHMETIC COMPLEXITIES OF TWO DIFF-VFF-RLS ALGORITHMS 
 ATC-VFF-RLS ATC-LCT-RLS 

)(nkw  O(K2L2) O(K2L2) 

)(nλ  
T  O(K2L2)  

2
_ iWσ  O(K2) 6K 

2ˆ
hσ  3  

             K: number of nodes; L: filter length. 
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TABLE IV  ACCURACY ANALYSIS OF THE THEORETICAL PREDICTIONS FOR THE ATC-RLS ALGORITHM IN FIG. 1 
SNR Point 1 Point 2 Point 3 Point 4 Point 5 
0 dB 2.4 2.3 5.2 7.5 >10 

10 dB 2.3 2.2 1.9 6.6 8.9 
20 dB 1.7 1.9 2.2 3.0 5.8 

         Point 1 to Point 5 correspond to the simulated results in Fig. 1 (from left to right) 
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Figure Caption 

Fig. 1.  Simulated and theoretical results of the steady-state MSDs for the ATC-RLS algorithm using different FFs with 

the colored input at SNR = (a) 0dB (b) 10dB (c) 20dB. K = 5, L = 10. 

Fig. 2.  The MSD curves of different ATC algorithms with the colored input at SNR = (a) 0dB (b) 10dB and (c) 20dB. 

K = 20, L = 10. 

Fig. 3.  The FF curves of ATC-LCT-RLS and ATC-VFF-RLS algorithms with the colored input at SNR = (a) 0dB (b) 

10dB and (c) 20dB. K = 20, L = 10. 
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Fig. 1.  Simulated and theoretical results of the steady-state MSDs for the ATC-RLS algorithm using different FFs with the colored input at SNR 
= (a) 0dB (b) 10dB (c) 20dB. K = 5, L = 10. 
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Fig. 2.  The MSD curves of different ATC algorithms with the colored input at SNR = (a) 0dB (b) 10dB and (c) 20dB. K = 20, L = 10. 
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Fig. 3.  The FF curves of ATC-LCT-RLS and ATC-VFF-RLS algorithms with the colored input at SNR = (a) 0dB (b) 10dB and (c) 20dB. K = 20, 
L = 10. 
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