Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102775
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorResearch Institute for Sustainable Urban Developmenten_US
dc.creatorSun, Sen_US
dc.creatorWang, Ten_US
dc.creatorYang, Hen_US
dc.creatorChu, Fen_US
dc.date.accessioned2023-11-17T02:57:42Z-
dc.date.available2023-11-17T02:57:42Z-
dc.identifier.issn0960-1481en_US
dc.identifier.urihttp://hdl.handle.net/10397/102775-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2021 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Sun, S., Wang, T., Yang, H., & Chu, F. (2022). Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function. Renewable Energy, 181, 59-70 is available at https://dx.doi.org/10.1016/j.renene.2021.09.024.en_US
dc.subjectBeamformingen_US
dc.subjectDamage identificationen_US
dc.subjectMicrophone arrayen_US
dc.subjectStructural health monitoringen_US
dc.subjectWind turbine bladeen_US
dc.titleDamage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty functionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage59en_US
dc.identifier.epage70en_US
dc.identifier.volume181en_US
dc.identifier.doi10.1016/j.renene.2021.09.024en_US
dcterms.abstractWind turbine blades are critical components in wind energy generation, and blade health management is a challenging issue for the operation and maintenance of wind turbines. In this paper, an adaptive method is developed to identify blade damages based on the microphone array and compressive beamforming, and global and remote health assessment can be accomplished. In this method, the generalized minimax-concave penalty function is employed to enhance sparse recovery capacities, and step-sizes in computation processes are adjusted adaptively to adapt to variational conditions. Besides, potential damage locations are extracted in coarse acoustic maps to improve convergence rates. Numerical simulations show that high spatial resolutions can be achieved by the proposed method, and the computation time for solving acoustic inverse problems is less than using existing algorithms, especially with low-frequency sources. Moreover, experiments are conducted with a small-scale wind turbine. Results demonstrate that several damages in operating blades can be precisely recognized with high efficiencies, and the deterioration of acoustic maps induced by improper step-sizes can be avoided. The proposed method provides a promising way for in-situ health monitoring of wind turbine blades.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationRenewable energy, Jan. 2022, v. 181, p. 59-70en_US
dcterms.isPartOfRenewable energyen_US
dcterms.issued2022-01-
dc.identifier.scopus2-s2.0-85115001982-
dc.identifier.eissn1879-0682en_US
dc.description.validate202311 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberBEEE-0004-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS60133418-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yang_Damage_Identification_Wind.pdfPre-Published version1.66 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

119
Last Week
2
Last month
Citations as of Nov 9, 2025

Downloads

131
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

39
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

32
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.