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Abstract 

Wind turbine blades are critical components in wind energy generation, and blade health 

management is a challenging issue for the operation and maintenance of wind turbines. In this 10 

paper, an adaptive method is developed to identify blade damages based on the microphone array 

and compressive beamforming, and global and remote health assessment can be accomplished. In 

this method, the generalized minimax-concave penalty function is employed to enhance sparse 

recovery capacities, and step-sizes in computation processes are adjusted adaptively to adapt to 

variational conditions. Besides, potential damage locations are extracted in coarse acoustic maps 15 

to improve convergence rates. Numerical simulations show that high spatial resolutions can be 

achieved by the proposed method, and the computation time for solving acoustic inverse problems 

is less than using existing algorithms, especially with low-frequency sources. Moreover, 

experiments are conducted with a small-scale wind turbine. Results demonstrate that several 

damages in operating blades can be precisely recognized with high efficiencies, and the 20 

deterioration of acoustic maps induced by improper step-sizes can be avoided. The proposed 

method provides a promising way for in-situ health monitoring of wind turbine blades. 

Keywords: wind turbine blade; damage identification; microphone array; beamforming; structural 

health monitoring 

1. Introduction 25 

Wind energy, as one of the promising and renewable energy sources, has experienced dramatic 

development for decades all over the world [1]. According to the report from the International 
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Energy Agency, there is a steady growth trend in wind energy exploitation, and wind energy 

generation is predicted to reach 4000 TW·h in 2030 [2-3]. In addition, the global goal of sustainable 

development is expected to be achieved with the utilization of wind energy. 

Wind turbine is the critical equipment for wind energy generation, and blades are crucial and 

expensive components in wind turbines [4]. Wind turbine blades interact with the wind directly, 5 

and they are leading parts for power generation efficiency since gearboxes and power generators 

are driven by blades ultimately. Moreover, wind turbine blades are usually located in high-altitude 

and harsh environments where wind resources are extremely abundant. Besides, there is a trend 

that blades are manufactured to be increasingly large [5]. In this case, the failure rate of blades is 

relatively high with respect to other parts in wind turbines, and both economic losses and 10 

catastrophic accidents are easily induced by undetected blade damages [6]. Hence, it is necessary 

to recognize damages in wind turbine blades, which can reduce operation and maintenance costs 

and improve the reliability of wind energy generation. With accurate monitoring of blade health 

conditions, serious accidents can be avoided by repairing or replacing damaged blades in time, and 

power generation losses caused by downtime can be reduced [7-8]. 15 

Several techniques have been proposed to identify damages in wind turbine blades. Ultrasonic 

and radiographic inspections are restricted to be used in manufacturing processes due to the 

limitation of scanning distances and coupling agents [9-10]. Vibration measurement is widely used 

in fault diagnosis of gearboxes [11-12], and it has also been applied to detect damages in wind 

turbine blades [13-14]. However, the identification of local damages in blades is hard to be achieved 20 

by vibration-based methods. Strain measurement can be accomplished using strain gauges and fiber 

Bragg gratings, and the sensing range is inadequate since structural deflections are small away from 

damage sources [15-16]. The main challenge of blade damage identification lies in the difficulty of 

damage characterization at the global level; thus, spatial information is necessary for health 

assessment. Microphone array is a useful facility for spatial filter and source recognition with 25 

acoustic maps, and it has been extensively used in speech enhancement [17] and noise localization 

[18]. Recently, a blade health monitoring scheme based on the microphone array has been studied 

[19], and blade damages can be actively detected by installing loudspeakers in internal cavities. In 

this case, structural damages are possible to be identified by externally positioned microphone array, 

since sound transmission properties across blade walls are affected by structural integrities. 30 
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Moreover, this scheme has the potential to be applied for operating blades due to the broad sensing 

range and convenience of damage localization. The schematic of the damage identification 

technique is depicted in Fig. 1. With excitations of loudspeakers, the microphone array is expected 

to recognize blade damages remotely [20], which is beneficial to reduce casualty accidents and 

power losses induced by blade failures. However, there are several unresolved problems in the 5 

current research for reliable inspections. Specifically, the spatial resolution in acoustic maps is 

inadequate to extract valid features of blade damages, and health monitoring applicability for 

operating blades has not been investigated in experiments. 

Microphone

array
Wind turbine
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Fig. 1. Schematic of blade damage identification with the microphone array. 10 

Beamforming is the key technique for identifying acoustic sources with the microphone array, 

and conventional beamforming is the most widely used method [21]. Spatial resolution of the 

conventional beamforming is restricted by the Rayleigh criterion, and source strength estimations 

are inaccurate when multiple damages exist in blades [22]. Compressive beamforming has been 

proposed to reconstruct sound fields by solving acoustic inverse problems with sparse prior 15 

information, and it has been applied to ocean acoustic measurement [23] and noise detection [24]. 

It is reported that the spatial resolution of compressive beamforming is much higher than the 

conventional beamforming and the deconvolution methods [25]. For blade damage identification 

with the microphone array, acoustic sources are sparse since damages that are hard to be examined 

by traditional methods are usually in infancies. The underlying sparsity brings the possibility to 20 

identify blade damages based on compressive beamforming. One of the well-known compressive 

beamforming strategies is l1-norm minimization, by which the underestimation of source strengths 

is unavoidable due to the penalty unevenness, and it may fail to recognize sources with insufficient 

sparsity [23, 26]. The weakness of l1-norm minimization prevents its application for blade health 

monitoring, especially with distributed damages. An alternative to l1-norm for sparse regularization 25 
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is the generalized minimax-concave (GMC) penalty function, by which the homogeneity of 

penalties to non-zero elements can be employed to improve sparse recovery accuracies [27-28]. 

However, there exist difficulties in the utilization of the GMC penalty function for blade damage 

identification with the microphone array. Specifically, the proper step-size in solving procedures of 

acoustic inverse problems with GMC penalties is hard to be determined due to the complexity of 5 

operating conditions. To improve the reliability of identification results, a small value of step-size 

should be used, while the large one is beneficial to reduce the computation time. With inappropriate 

step-sizes, blade damages could be wrongly recognized in blurry acoustic maps, and the high 

computation efficiency is difficult to be guaranteed. Therefore, there is an urgent demand to 

develop applicable methods for blade damage identification based on compressive beamforming 10 

and GMC penalties, which is promising to evaluate blade health conditions in actual scenarios. 

In this investigation, compressive beamforming is considered in structural health monitoring 

of wind turbine blades for the first time, and an adaptive method is proposed to generate high-

quality acoustic maps efficiently for blade damage identification. Specifically, residual of sound 

field reconstruction is regularized by GMC penalties to improve the recognition performance for 15 

acoustic sources corresponding to blade damages. Besides, acoustic inverse problems are solved 

by the proximal gradient method (PGM) with backtracking and acceleration strategies, and 

proximal gradient steps are implemented at extrapolation points with adaptively adjusted step-sizes. 

In this case, step-sizes are large during the initial period to accelerate the convergence, and small 

step-sizes are adopted at the later stage to improve damage identification precisions. Moreover, 20 

auxiliary information about potential damage locations is exacted by conventional beamforming 

and peak search procedures to enhance computational efficiencies. The proposed method is robust 

since the step-size limitation in the existing algorithm [27] for guaranteeing convergence can be 

removed by adjusting step-sizes adaptively. 

The rest of this paper is organized as follows: Section 2 provides basic theories about acoustic 25 

inverse problems, convex optimization, peak search, and the proposed method. Then, Monte Carlo 

simulation results based on different methods are analyzed in Section 3. In addition, Section 4 

shows experimental validations of the proposed method for damage identification. Finally, 

conclusions are presented in Section 5. 
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2. Basic theories 

2.1 Compressive beamforming 

Let us refer to an array consisting of M microphones, which are placed at rm (m = 1, 2, …, M). 

Suppose that the search region is divided into N grid points, and the position of each point is 

denoted as rn (n = 1, 2, …, N). When there is no flow, the acoustic inverse problem in the frequency 5 

domain is denoted as 

 = +p Gq e  (1) 

where p = [p1, p2, …, pM]T is the sound pressure vector, q = [q1, q2, …, qN]T is the potential source 

strength vector, e = [e1, e2, …, eM]T is the noise vector, G is the propagation matrix consisting of 

the transfer function 
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, ωn is the angular frequency, c is the velocity of 10 

sound, and j 1= −  is the imaginary unit. 

The basic principle for compressive beamforming is to identify acoustic sources by solving 

inverse problems with sparse prior information. Compressive beamforming based on the GMC 

penalty function estimates q from Eq.(1) using a fine approximation of l0-norm, and acoustic maps 

are generated based on the optimization problem 15 
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q v B q v  is the generalized Huber function. 

By considering the auxiliary variable v, Eq.(2) can be expressed as a saddle-point problem 

 ( )min max ,F
q v

q v  (3) 20 

where ( ) ( )
22

2 1 1 2

1
,

2 2
F


 = − + − − −q v p Gq q v B q v . 

With the reasonable selection of key parameters including λ and B, the objective function can 

be convex even though the penalty function is non-convex [27]. Hence, the non-convexity can be 

used to generate more accurate results for blade damage identification than using l1-norm 

minimization, and the inverse problem can be solved by convex optimization [29]. 25 

2.2 Proximal gradient method 

PGM is a powerful approach for non-smooth optimization, and the fundamental idea is to split 
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the objective function into two items, one of which is differentiable [30]. In this condition, the 

objective function in Eq.(3) with respect to variable q is expressed as 

 ( ) ( ) ( )1 2F f f= +q q q  (4) 

where ( ) ( )
22

1 2 1 2

1
=

2 2
f


− − − −q p Gq v B q v   denotes the smooth item and ( )2 1

f =q q  

denotes the non-smooth item. 5 

PGM is performed with proximal gradient steps, and the variable update rule is 

 ( ) ( ) ( )( )
2
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k k k

f f 
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proxq q q  (5) 

where prox is the proximal operator, k is the counting variable, η is the step-size, and f  denotes 

the gradient of function f [31]. 

PGM converges with a rate of 
1

O
k

 
 
 

 when 
1
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，  and f  is Lipschitz continuous 10 

with a constant L [30]. Nevertheless, convergence is merely the fundamental requirement for blade 

damage identification, and the computation precision and efficiency are affected by the selection 

of step-sizes. In actual operations, characteristics of wind turbines and circumstances are 

variational, and the determination of step-sizes is a challenging matter for the array-based methods. 

To handle this problem, the backtracking strategy can be utilized to adjust step-sizes adaptively 15 

[32]. Hence, a large value can be set as the initial step-size, then the Lipschitz condition is examined 

repeatedly to decrease the step-size with the shrinkage factor 0 < β < 1. The PGM solving process 

continues only if the following condition is satisfied 
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k

f f q q q  (6) 
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Furthermore, the convergence efficiency of PGM can be improved by the acceleration strategy 

[33]. In detail, each proximal gradient step for k > 0 is conducted at the extrapolation point 
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It has been proven that iteration times for accelerated PGM to obtain the ε-optimal solution is 25 
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2.3 Peak search 

 

Fig. 2. Illustration of peaks in an acoustic map. 

Fig. 2 shows a rough acoustic map generated by conventional beamforming, in which several 

peaks indicating potential damages in blades are marked by downward arrows. It is shown that 5 

peaks in the acoustic map distribute among a number of connected grids due to the low spatial 

resolution. Thus, peak detection cannot be accomplished by the pixel-by-pixel search directly. 

Moreover, there are similarities between the peak and Gaussian function with respect to the shape, 

providing opportunities to extract peaks by template matching. In this paper, peaks in acoustic maps 

are recognized using two-dimensional Gaussian function 10 
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where μx and μy denote means, and σx and σy are standard deviations. 

With proper parameters in Eq.(8), the Gaussian function can be adjusted to have a similar 

shape with peaks in acoustic maps. Thus, it is feasible to find peaks by filtering acoustic maps with 

the Gaussian kernel function, and the extraction can be achieved using two-dimensional 15 

convolution. Then, the pixel-by-pixel search is used to locate peaks in filtered results, in which the 

value of each pixel represents the similarity between the surrounding region and kernel function. 

2.4 The proposed method for blade damage identification 

In the damage identification of wind turbine blades with the microphone array, potential 

damages are represented by sources in acoustic maps, and health evaluation accuracies are closely 20 

correlated to acoustic source recognition performances. Compressive beamforming based on the 

GMC penalty function is superior in improving spatial resolutions while the computation is time-
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consuming, and conventional beamforming is efficient for acoustic source recognition. Hence, 

there is a potential to achieve satisfactory performances of both efficiency and accuracy with the 

combination of conventional beamforming and compressive beamforming. Blade damages mainly 

exist in regions where acoustic source strengths are higher than surrounding areas, and they are 

relevant to peaks in acoustic maps. In this case, with the recognition of peaks from conventional 5 

beamforming results, a well-designed initial solution can be formed based on auxiliary information 

concerning potential damage locations. Compared to widely used initial solutions, including 

random values and zeros, the solution initialization pattern enhances the similarity between initial 

and target solutions further. Therefore, the convergence rate can be improved by decreasing 

iterative steps used to estimate the distribution of supports in damage identification results. 10 
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Beamforming output

Generate rough acoustic maps

Threshold filter with half of the 

mean value T = μMAP / 2

2D convolution with Gaussian 

kernel function
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inequality conditions
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Fig. 3. Flowchart of the proposed method. 

Moreover, the solving stability and efficiency of acoustic inverse problems with GMC 

penalties can be improved by backtracking and acceleration strategies. Specifically, adaptively 

adjusted step-sizes are used to avoid inappropriate iteration processes, and the extrapolation based 15 
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on two previous points is adopted to accelerate the convergence of proximal gradient steps. Thus, 

step-sizes are set to large values at the early stage to approach the vicinity of desired results rapidly, 

and solutions are finely tuned with small step-sizes at last to guarantee the identification accuracy 

of blade damages. In this case, there is no difficulty to estimate the proper value of step-sizes before 

solving processes, and the step-size can be set to a relatively large value without the consideration 5 

of the Lipschitz constant. 

Hence, a novel and adaptive method is developed to identify blade damages based on acoustic 

maps with high spatial resolutions and efficiencies. The flow chart of the proposed algorithm is 

shown in Fig. 3, and the primary steps are summarized as follows: 

Step 1: For a M-tuple array measurement p, the rough acoustic map Q = [Qr,s]R×S (r = 1, 2, …, 10 

R, s = 1, 2, …, S, and R × S = N) is generated by conventional beamforming, in which 

, 10 5
20log
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, 
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n
n

n
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g p

g
, n = R(s – 1) + r, and gn is the n-th column of G as described 

in Eq.(1). 

Step 2: The rough acoustic map is cleaned by removing elements less than 
2

MAPT


= , and 

μMAP denotes the mean value of map elements. Then, two-dimensional convolution is implemented 15 

with the map and Gaussian kernel function to generate the filtered map ,
ˆ ˆ[ ]r s R SQ =Q . In addition, 

peaks are recognized based on inequality conditions: , 1, 1
ˆ ˆ

r s r sQ Q − − , , 1,
ˆ ˆ

r s r sQ Q − , , 1, 1
ˆ ˆ

r s r sQ Q − + , 

, , 1
ˆ ˆ

r s r sQ Q − , , , 1
ˆ ˆ

r s r sQ Q + , , 1, 1
ˆ ˆ

r s r sQ Q + − , , 1,
ˆ ˆ

r s r sQ Q + , and , 1, 1
ˆ ˆ

r s r sQ Q + + . Finally, locations of the 

first W peaks in descending order are recorded as 
T

1 2[ , ,..., ]Wd d d=d , where dl (l = 1, 2, …, W) is 

the index of the l-th peak with respect to conventional beamforming results in the vector form. 20 

Step 3: The initial solution for compressive beamforming is formed as q(0), in which elements 

corresponding to d are set to random values, and other positions are filled with zeros. 

Step 4: Acoustic inverse problem with the GMC penalty function is solved with q(0) through 

iteration processes, and the step-size shrinkage factor 0 < β < 1 is considered to adjust the step-size 

in each iteration step adaptively. Specifically, the step-size is scaled down by β as 25 
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addition, optimization variables are updated as 
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where k is the counting variable for solving process, 0 < γ < 1 is the balanced factor for determining 




=B G , η(k) denotes the step-size, and y(k) is the extrapolation point defined in Eq.(7). 5 

The iteration process for solving acoustic inverse problems executes until the convergence 

condition is satisfied, and a common criterion is the relative error between two adjacent steps. 

Overall, there are two key parameters in the proposed method: potential source number W and 

step-size shrinkage factor β. Specifically, supports in the designed initial solution are influenced by 

W, and β adjusts the step-size in each iteration step adaptively to balance the solving efficiency and 10 

result precision. Additional computations induced by conventional beamforming and peak search 

are certainly marginal since there is no iteration process in them, and the proposed method provides 

an efficient way to identify blade damages with the superiority of GMC penalties. 

3. Numerical studies 

Before experimental verifications, several numerical simulations are implemented to 15 

investigate the effects of key parameters on performances of the proposed method, and parameter 

selection criteria are discussed. In addition, blade damages are simulated by a number of monopole 

acoustic sources in the framework of active damage identification with the microphone array. To 

indicate source identification accuracies quantitatively, the location relative error index (LEI) and 

magnitude relative error index (MEI) are defined as 20 
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where q* is the actual strength vector of acoustic sources in sound pressure level (SPL); q is the 

computed strength vector in SPL; qco denotes the copied vector of q, and non-zero elements in qco 

are set to 1; q(i) is the i-th element of q; N is the number of search grids; I is the number of actual 25 

sources. 
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3.1 Effects of potential source numbers 

In acoustic maps, blade damages are represented by identified sources, and the potential 

source number W provides auxiliary information concerning supports in damage identification 

results. The determination of W is necessary for the employment of the developed method. 

However, it is not easy to estimate the value of W in advance since obtaining the number of damages 5 

is exactly one of the targets of blade damage identification. Hence, it is significant to examine the 

effects of the assumed W on sound field reconstruction, especially when estimations of W are away 

from the actual value. 

Monte Carlo simulations are utilized to investigate the impacts of W on computation processes 

and results. Specifically, the proposed method with W = 1, 2, …, 9, and the incomplete method 10 

without W are separately conducted 200 times with the existence of four acoustic sources, which 

are randomly placed in each trial to simulate blade damages. With different values of W, particular 

initial solutions are formed based on conventional beamforming results, while without W means 

that the solution is initialized randomly. A ring array with 50 microphones is set at a distance of 0.5 

m from the 0.6 m × 0.6 m reconstruction plane, in which 1681 search grids and four acoustic 15 

sources at 3000 Hz are considered. Moreover, white Gaussian noise is added to signals received by 

each microphone with a signal-to-noise ratio (SNR) of 25 dB. The convergence is regarded to be 

achieved when the relative error between two adjacent iteration steps becomes less than 10-3, and 

β is 0.7 in all trials. 

As shown in Fig. 4(a), the average iteration time is sufficiently relevant to W. When values of 20 

W are close to the actual value, the average iteration time can be reduced with respect to the 

condition without W, which is represented as the red dotted line. In the ideal case, the computation 

efficiency is improved by 40.49% at most. This benefits from the estimation of solution supports, 

which are advantageous to arrange initial solutions that are similar to the desired pattern. Even 

when W is set away from the actual value, the average iteration time is close to that of the case 25 

without W, indicating that the deterioration of computation efficiency with improper W is avoided. 

In this case, solutions with wrong supports can be regarded as random vectors, and the solving 

efficiency is no worse than that with the latter. Fig. 4(b) depicts the cumulative distribution function 

(CDF) of iteration time in trials with W = 4 and 8, and without W. The CDF reveals the probability 

that the iteration time is no more than the given value, and the probability is estimated by 30 
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occurrence frequencies in this segment. When W = 4, the probability that iteration time is less than 

8 s is 96.1%, while the corresponding probabilities for conditions with W = 8 and without W are 

63.4% and 62.7%, respectively. The average LEI and MEI are illustrated in Fig. 4(c) and Fig. 4(d). 

It is clear that the value of W has no obvious influence on source localization accuracy, and 

magnitude errors of source strengths are insensitive to W. 5 
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Fig. 4. Simulation results with different potential source numbers: (a) average iteration time, (b) CDF, (c) 

average LEI, and (d) average MEI. 

To sum up, the proper selection of W can reduce iteration time for generating acoustic maps, 

while maintaining solution accuracies in both source locations and strengths. This can be achieved 10 

especially when W is in the vicinity of the actual source number. When errors exist in the estimation 

of W, the solving efficiency is no worse than the circumstance without W. Hence, the consideration 

of potential damage locations is useful to improve the computation efficiency of blade damage 

identification with the microphone array. 

3.2 Effects of step-size shrinkage factors 15 

Step-size shrinkage factor β influences the step-size adjustment pattern, which controls the 

forward speed for finding appropriate solutions of damage identification. Moreover, a large value 

of η(0) can be set at the beginning of solving processes since the step-size is gradually scaled down 

by β to guarantee convergence. Nevertheless, the selection criterion of β is still undiscovered for 
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blade health assessment with the proposed method. 

Effects of β on acoustic source identification are investigated with 3600 Monte Carlo 

simulations, of which the microphone array and search grids are the same as the description in 

Section 3.1. Specifically, β is changed from 0.1 to 0.9 with an interval of 0.05, and acoustic maps 

are also generated by the reference algorithm in which both backtracking and acceleration 5 

procedures are skipped. Simulation trials are run 200 times with each configuration. In addition, 

two randomly placed acoustic sources at 3000 Hz are considered to denote damages in wind turbine 

blades. The SNR in all simulations is 25 dB, and W is set to 2. Furthermore, the initial step-size for 

conditions with β is 10/ρ that is beyond the tolerance range mentioned in [27], and the fixed step-

size 1/ρ is adopted in the reference algorithm to ensure the convergence. 10 
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Fig. 5. Simulation results with different step-size shrinkage factors: (a) average iteration times, (b) average 

iteration time, (c) average LEI, and (d) average MEI. 

It can be found in Fig. 5(a) and Fig. 5(b) that the increase in β can cut down both average 

iteration times and computation time, leading to higher solving efficiency of acoustic inverse 15 

problems. With large values of β, the step-size in each iteration step is scaled moderately. In this 

circumstance, the solving procedure is efficiently performed with large step-sizes at preliminary 

stages. For later stages, outputs are finely adjusted with small step-sizes to ensure the accuracy of 

acoustic maps. Moreover, the efficiency of the proposed method can surpass that of the reference 
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condition, which is denoted as the red dotted line, when β is larger than 0.2. On the contrary, the 

step-size adjustment is radical with small values of β. Then, step-sizes are too little at the early 

stage, leading to an increase in computation time. It is observed that average iteration times with β 

= 0.15 and 0.2 are less than that of the reference, while more average iteration time is needed. This 

could be attributed to the additional computations induced by backtracking and acceleration 5 

processes. However, the increased time in each iteration can be hedged by the decrease in iteration 

times with large β. Besides, the localization accuracy is insensitive to the selection of β, and there 

is a trend that the average MEI increases slightly when β decreases. This is probably because the 

solving procedure is stopped much earlier with smaller step-sizes. 

Taken together, the adaptive adjustment strategy provides a valid approach to find appropriate 10 

step-sizes in computation processes, which can balance the efficiency and accuracy of blade 

damage identification. Thus, the difficulty in step-size determination for solving inverse problems 

with GMC penalties under variational conditions can be resolved. Moreover, it is preferable to set 

β to relatively large values for the proposed method, which is beneficial to improve approximation 

abilities to the optimized step-size. 15 

3.3 Effects of source frequencies 

For active blade damage identification with the microphone array, loudspeakers are placed in 

blade cavities to make sounds, and analysis frequencies are selected as required. In addition, despite 

the great penetration of signals at low frequencies, the identification of low-frequency sources is 

still a challenging task. Therefore, this segment focuses on the effects of acoustic source 20 

frequencies on source identification performances of the proposed method. 

Monte Carlo simulations are implemented with a microphone array and two randomly placed 

monopole sources, which are at frequencies from 2000 Hz to 8000 Hz with an interval of 1000 Hz. 

Simulation configurations are the same as the statement in Section 3.2. For each frequency, the 

proposed method and standard PGM developed in [27] are applied, and the SNR is 20 dB. 25 

Moreover, three values of step-size shrinkage factor β = 0.6, 0.7, and 0.8 are considered, and the 

potential source number W is set to 2. Furthermore, repeated trials are conducted 200 times with 

each simulation configuration. 
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Fig. 6. Simulation results with different source frequencies: (a) average iteration time, (b) CDF, (c) average 

LEI, and (d) average MEI. 

For the proposed method, curves in Fig. 6(a) with different β are close to each other. In 

addition, patterns of average iteration time with two methods are different, and the distinction 5 

between them becomes inapparent with the increase in the source frequency. Specifically, the 

proposed method is more stable in solving efficiency than the standard PGM, and it could be 

induced by specially arranged initial solutions. These initial solutions provide a feasible way to 

approach the desired results by estimating potential damage locations. When the source frequency 

is lower than 6000 Hz, the proposed method is more efficient than the standard PGM. However, 10 

the proposed method is slower when the source frequency is no less than 6000 Hz, suggesting the 

limitation of the proposed method. Fig. 6(b) shows results from the view of the probability 

distribution. As for 4000 Hz, there is a great distance between CDF curves for different methods, 

and the minimal iteration time of standard PGM is larger than the maximum of the proposed method. 

When it comes to 7000 Hz, the proposed method performs slightly worse, and there are overlaps 15 

in the iteration time of the two methods. Moreover, Fig. 6(c) and Fig. 6(d) show that both 

localization and magnitude estimation accuracies of the proposed method are fine and stable within 

a wide range of source frequencies. 

Results in this segment indicate that the proposed method can improve the solving efficiency 

of acoustic inverse problems under low-frequency circumstances while guaranteeing the accuracy 20 
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of acoustic maps. Moreover, poor performances induced by inappropriate estimations of step-sizes 

can be avoided by shrinking step-sizes adaptively. Therefore, it is preferable to detect blade 

damages with the excitation of loudspeakers at low frequencies, which is helpful to reduce 

economic costs and implementation difficulties of blade health management. 

4. Validations based on experimental data 5 

In this section, several experiments are conducted to examine the feasibility of blade damage 

identification based on the proposed method. Moreover, identification accuracy and efficiency for 

several types of damages are revealed by comparing results obtained using distinct approaches. 

4.1 Experimental setup 
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Computer
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 10 

Fig. 7. Experimental setup for blade damage identification. 

Experiments with a laboratory-scale wind turbine and microphone array were carried out in a 

semi-anechoic room. As shown in Fig. 7, the array was constituted by 48 microphones, and it was 

placed 2.15 m away from the blade rotation plane. Fig. 8 illustrates blades used in experiments, 

which were made of glass fiber reinforced plastics and had prefabricated openings for loudspeakers 15 

at the back. In addition, the wind turbine consisted of three blades, one of which was healthy, and 

the other two were damaged to simulate different health conditions, including blades with adhesive 

joint failures, cracks, and holes. Damages in blades were made by drills and cutters. In order to 

activate damage-related information for microphone array measurement, loudspeakers were 

installed in cavities of healthy and one of the damaged blades. Moreover, the wind turbine was 20 

driven by an electromotor at 10 rpm. It should be mentioned that the semi-anechoic room was used 
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to avoid the reverberation of rooms since actual wind turbines usually work in open areas where 

the sound reverberation is negligible. 

(a)

(b)

(c)

(d)

 

Fig. 8. Wind turbine blades used in experiments: (a) healthy blade, (b) damaged blade with an adhesive joint 

failure, (c) damaged blade with a crack, and (d) damaged blade with a hole. 5 

4.2 Blade damage identification of adhesive joint failures 

To examine the practicability of the proposed method, adhesive joint failures were simulated 

by thin kerfs with a length of 10 cm in the leading edge. Fig. 9 depicts acoustic maps for healthy 

and damaged blades with adhesive joint failures, and β = 0.8 and W = 5 are used for the proposed 

method. Search grids are at -1 m < x < 1 m, -0.8 m < y < 0.8 m, and the dynamic range is 10 dB. It 10 

should be stated that acoustic maps are rotated artificially based on the rotation center and speed, 

and the blur is insignificant due to the relatively slow rotation and short snapshot duration of 15 

ms. It is depicted that adhesive joint failures are recognized by the proposed method, and the valid 

acoustic map can be seen in Fig. 9(a). There are several identified sources at the damaged blade 

with the loudspeaker, and damage locations can be reflected by source distributions. In addition, 15 

there is no source in another damaged blade and the healthy blade. Thus, it is feasible to examine 

blade health conditions with the microphone array, and damages can only be detected with 

loudspeakers in blade cavities. 

For standard PGM and l1-norm minimization, the sparsity of acoustic sources can be 

guaranteed in Fig. 9(b) and Fig. 9(c), whereas blade damages are not well recognized to provide 20 

useful information about blade damages. In this section, the step-size of standard PGM is set to 

2/(3ρ) for all cases, and the selected step-size is not suitable to detect adhesive joint failures in wind 

turbine blades. The appropriate determination of step-sizes for standard PGM is a difficult task in 

blade damage identification, since there is little prior information that can be employed under 

variational conditions. In the proposed method, step-sizes in solving procedures of acoustic inverse 25 
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problems are adjusted adaptively to avoid improper selections, which is beneficial to improve the 

reliability of health assessment for actual blades. For conventional beamforming, the resolution of 

acoustic maps is too low to recover source distributions precisely, which is detrimental to feature 

extraction of blade damages. 
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Fig. 9. Acoustic maps for healthy blades and blades with adhesive joint failures based on: (a) the proposed 

method, (b) standard PGM, (c) l1-norm minimization, and (d) conventional beamforming. 

It should be stated that there are flaws in damage identification results for adhesive joint 

failures based on the proposed method, and acoustic source locations are not completely 

corresponding to blade damages. This may be related to the opening direction of adhesive joint 10 

failures, and there is an obvious pressure gradient in the search plane. In addition, rotation 

compensation is also influential in acoustic maps due to inevitable errors about rotation speeds and 

initial angles in practical measurement. However, valuable information concerning adhesive joint 

failures can only be provided by the proposed method, and the other three methods are absolutely 

invalid for blade damage identification. 15 

4.3 Blade damage identification of cracks 

In experiments, cracks were represented by thin kerfs with a length of 10 cm at the pressure 
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side, with which sound transmission performances across blade walls were changed within a 

connected area. Additionally, shapes of cracks and adhesive joint failures were the same, and they 

existed in distinct parts of wind turbine blades. 

As shown in Fig. 10(a), cracks can be recognized by the proposed method with β = 0.8 and W 

= 5, and there are several sources at the damaged blade with the loudspeaker. In addition, acoustic 5 

sources identified in the map are distributed in the damaged regions, which is useful for inferring 

blade damage locations and types. Fig. 10(b) to Fig. 10(d) are acoustic maps obtained by standard 

PGM, l1-norm minimization, and conventional beamforming. Results based on standard PGM and 

the proposed method are extremely similar, indicating that there is little difference between 

identification accuracies of the two methods. Moreover, the computation time of the proposed 10 

method is 279.56 s, and it is significantly lower than that of standard PGM 523.16 s. In this context, 

the proposed method is more efficient for blade damage identification than the standard PGM, 

while result precisions based on the two methods are similarly fine. 
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Fig. 10. Acoustic maps for healthy blades and blades with cracks based on: (a) the proposed method, (b) 15 

standard PGM, (c) l1-norm minimization, and (d) conventional beamforming. 

Results based on l1-norm minimization are indeed sparse in the spatial domain, whereas the 

damage type is not well reflected in Fig. 10(c). The wrong recognition of distributed sources is a 
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common issue for l1-norm minimization, and it is disadvantageous for examining blade health 

conditions in practical cases [35]. Conventional beamforming generates coarse and confusing 

results since it is not suitable for multiple source detection, especially with coherent sources. Hence, 

results based on l1-norm minimization and conventional beamforming fail to provide valid 

information concerning cracks in wind turbine blades. 5 

4.4 Blade damage identification of holes 
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Fig. 11. Acoustic maps for healthy blades and blades with holes based on: (a) the proposed method, (b) 

standard PGM, (c) l1-norm minimization, and (d) conventional beamforming. 

In Fig. 11, holes in blades can be identified by the proposed method and the standard PGM, 10 

and source locations reflect damage positions in blades exactly. In this case, they are both feasible 

to generate accurate acoustic maps that are valuable for blade health management with the 

microphone array. However, the computation time of the standard PGM for identifying holes is 

514.92 s, which is much higher than that of the proposed method 261.98 s. Fig. 11(c) shows the 

acoustic map obtained using l1-norm minimization, in which acoustic sources can be found in both 15 

healthy and damaged blades. In addition, there is an identified source out of the blade structure. 

When it comes to conventional beamforming, although the acoustic source related to blade 

damages can be roughly found, the spatial resolution is extremely low to confuse damage locations. 
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Thus, acoustic maps obtained using l1-norm minimization and conventional beamforming are 

inaccurate for blade damage identification. 

The computation time of solving acoustic inverse problems under different conditions is 

illustrated in Fig. 12. For holes and cracks in wind turbine blades, they can be identified by both 

the proposed method and standard PGM with a constant step-size. Nevertheless, the computation 5 

time of standard PGM is too long to be used in practical applications, and the proposed method 

provides an effective way to accelerate the computation. When it comes to adhesive joint failures, 

valid information of blade damages cannot be provided by standard PGM due to the impropriety 

of step-sizes, and reliable identification results can be acquired by the proposed method effectively. 
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Fig. 12. Computation time for acoustic maps with different configurations. 

To sum up, acoustic maps are convenient for recognizing blade damage locations and types 

based on source distributions, and the proposed method is applicable for blade damage 

identification with concentrated and distributed damages. Benefit from the designed algorithm, the 

difficulty of step-size determination in existing methods is resolved by adjusting step-sizes 15 

adaptively. In this context, blade damages can be reflected in high-resolution acoustic maps, and 

computation time for solving acoustic inverse problems with GMC penalties is cut down. Errors in 

identifying adhesive joint failures indicate that the proposed method is sensitive to all acoustic 

sources, which may disturb the identification precision of blade damages, especially with 

aerodynamic and mechanical noises. Thus, more advanced techniques for extracting damage-20 

related sources need to be investigated in further studies. 

5. Conclusions 

This paper focuses on active damage identification of wind turbine blades with the 

microphone array, which is of great significance to improve the reliability of wind energy 

generation. An adaptive method for compressive beamforming based on the generalized minimax-25 
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concave penalty function is proposed, and it can be used to identify blade damages by 

reconstructing sound fields with high spatial resolutions and efficiencies. Simulation results 

indicate that the method can overcome the difficulty in the step-size determination under variational 

conditions by adjusting step-sizes adaptively, and it performs well under low-frequency conditions. 

Besides, fast convergence can be achieved when the potential source number is close to the number 5 

of actual sources and the step-size shrinkage factor is relatively large. Moreover, the method is 

validated with a laboratory-scale wind turbine under different blade health conditions. Results show 

that blade damages can be recognized by the proposed method with great performances in 

computation efficiency and solution accuracy, and it is more practicable for damage identification 

of wind turbine blades than existing methods. This work provides a promising approach for blade 10 

health monitoring under operating conditions, and damage localization and classification are 

convenient to be achieved. For future research, the effects of wind and noise under operating 

conditions need to be considered, and studies with utility-scale wind turbines are necessary. 
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Abbreviations and Nomenclature 

Nomenclature 

B Auxiliary matrix 

c Velocity of sound, m/s 

d Peak index vector 

e Noise vector 

F Objective function 

f Items in the objective function 

G Propagation matrix 

g Transfer function 

H Generalized Huber function 

I The number of actual acoustic sources 
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k Counting variable 

L Lipschitz constant 

M The number of microphones 

N The number of search points 

p Sound pressure vector 

prox Proximal operator 

Q Rough acoustic map 

Q̂  Filtered acoustic map 

q Potential source strength vector 

q* Actual strength vector 

R The number of rows of acoustic maps 

r Position vector 

S The number of columns of acoustic maps 

T Threshold for element removal 

v Auxiliary vector 

W The number of potential sources 

y Extrapolation point 

  Gradient of the function 

Subscripts 

co Copy 

l The index of peaks 

m The index of microphones 

n The index of search points 

r The row index of elements in acoustic maps 

s The column index of elements in acoustic maps 

t The index of iterations for step-size adjustment 

Greek symbols 

β Shrinkage factor 

ρ Extrapolation parameter 
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σ Standard deviation 

η Step-size 

θ Scale factor 

λ Regularization parameter 

μ Mean 

ψ GMC penalty function 

ω Angular frequency, rad/s 

Abbreviations 

CDF Cumulative distribution function 

GMC Generalized minimax-concave 

LEI Location relative error index 

MEI Magnitude relative error index 

PGM Proximal gradient method 

SNR Signal-to-noise ratio 

SPL Sound pressure level 
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