Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102481
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorJin, YFen_US
dc.creatorYin, ZYen_US
dc.creatorZhou, WHen_US
dc.creatorHorpibulsuk, Sen_US
dc.date.accessioned2023-10-26T07:18:48Z-
dc.date.available2023-10-26T07:18:48Z-
dc.identifier.issn1861-1125en_US
dc.identifier.urihttp://hdl.handle.net/10397/102481-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© Springer-Verlag GmbH Germany, part of Springer Nature 2019en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s11440-019-00847-1.en_US
dc.subjectBayesian parameter identificationen_US
dc.subjectClayen_US
dc.subjectConstitutive modelen_US
dc.subjectPressuremeteren_US
dc.subjectSanden_US
dc.subjectTransitional Markov chain Monte Carloen_US
dc.titleIdentifying parameters of advanced soil models using an enhanced transitional Markov chain Monte Carlo methoden_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1925en_US
dc.identifier.epage1947en_US
dc.identifier.volume14en_US
dc.identifier.issue6en_US
dc.identifier.doi10.1007/s11440-019-00847-1en_US
dcterms.abstractParameter identification using Bayesian approach with Markov Chain Monte Carlo (MCMC) has been verified only for certain conventional simple constitutive models up to now. This paper presents an enhanced version of the differential evolution transitional MCMC (DE-TMCMC) method and a competitive Bayesian parameter identification approach for applying to advanced soil models. To realize the intended computational savings, a parallel computing implementation of DE-TMCMC is achieved using the single program/multiple data technique in MATLAB. To verify its robustness and effectiveness, synthetic numerical tests with/without noise and real laboratory tests are used for identifying the parameters of a critical state-based sand model based on multiple independent calculations. The original TMCMC is also used for comparison to highlight that DE-TMCMC is highly robust and effective in identifying the parameters of advanced sand models. Finally, the proposed parameter identification using DE-TMCMC is applied to identify parameters of an elasto-viscoplastic model from two in situ pressuremeter tests. All results demonstrate the excellent ability of the enhanced Bayesian parameter identification approach on identifying parameters of advanced soil models from both laboratory and in situ tests.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationActa geotechnica, Dec. 2019, v. 14, no. 6, p. 1925-1947en_US
dcterms.isPartOfActa geotechnicaen_US
dcterms.issued2019-12-
dc.identifier.scopus2-s2.0-85068793842-
dc.identifier.eissn1861-1133en_US
dc.description.validate202310 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberCEE-1150-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Macau Science and Technology Development Funden_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS20985015-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Jin_Identifying_Parameters_Advanced.pdfPre-Published version4.98 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

133
Last Week
3
Last month
Citations as of Nov 9, 2025

Downloads

108
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

89
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

82
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.