Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102459
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorLi, Sen_US
dc.creatorMa, Xen_US
dc.creatorBian, Xen_US
dc.creatorLai, SKen_US
dc.creatorZhang, Wen_US
dc.date.accessioned2023-10-26T07:18:37Z-
dc.date.available2023-10-26T07:18:37Z-
dc.identifier.issn0924-090Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/102459-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© Springer Nature B.V. 2019en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s11071-019-05380-0.en_US
dc.subjectHomoclinic chaosen_US
dc.subjectMelnikov methoden_US
dc.subjectNon-smooth oscillatorsen_US
dc.subjectSuppressing chaosen_US
dc.titleSuppressing homoclinic chaos for a weak periodically excited non-smooth oscillatoren_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1621en_US
dc.identifier.epage1642en_US
dc.identifier.volume99en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1007/s11071-019-05380-0en_US
dcterms.abstractIn this work, some new effective methods for suppressing homoclinic chaos in a weak periodically excited non-smooth oscillator are studied, and the main idea is to modify slightly the Melnikov function such that the zeros are eliminated. Firstly, a general form of planar piecewise-smooth oscillators is given to approximatively model many nonlinear restoring force of smooth oscillators subjected to all kinds of damping and periodic excitations. In the absence of controls, the Melnikov method for non-smooth homoclinic trajectories within the framework of a piecewise-smooth oscillator is briefly introduced without detailed derivation. This analytical tool is useful to detect the threshold of parameters for the existence of homoclinic chaos in the non-smooth oscillator. After some methods of state feedback control, self-adaptive control and parametric excitations control are, respectively, considered, sufficient criteria for suppressing homoclinic chaos are derived by employing the Melnikov function of non-smooth systems. Finally, the effectiveness of strategies for suppressing homoclinic chaos is analytically and numerically demonstrated through a specific example.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNonlinear dynamics, Jan. 2020, v. 99, no. 2, p. 1621-1642en_US
dcterms.isPartOfNonlinear dynamicsen_US
dcterms.issued2020-01-
dc.identifier.scopus2-s2.0-85076853799-
dc.identifier.eissn1573-269Xen_US
dc.description.validate202310 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberCEE-1057-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS15839613-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Lai_Suppressing_Homoclinic_Chaos.pdfPre-Published version3.01 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

134
Last Week
4
Last month
Citations as of Nov 9, 2025

Downloads

101
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

21
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

21
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.