Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/102329
| Title: | Building the conformal protection of VB-group VS2 laminated heterostructure based on biomass-derived carbon for excellent broadband electromagnetic waves absorption | Authors: | Wang, H Zhang, H Cheng, J Liu, T Zhang, D Zheng, G Zhai, S Cao, M |
Issue Date: | Mar-2023 | Source: | Journal of materiomics, Mar. 2023, v. 9, no. 3, p. 492-501 | Abstract: | Although VB-Group transition metal disulfides (TMDs) VS2 nanomaterials with specific electronic properties and multiphase microstructures have shown fascinating potential in the field of electromagnetic wave (EMW) absorption, the efficient utilization of VS2 is limited by the technical bottleneck of its narrow effective absorption bandwidth (EAB) which is attributed to environmental instability and a deficient electromagnetic (EM) loss mechanism. In order to fully exploit the maximal utilization values of VS2 nanomaterials for EMW absorption through mitigating the chemical instability and optimizing the EM parameters, biomass-based glucose derived carbon (GDC) like sugar-coating has been decorated on the surface of stacked VS2 nanosheets via a facile hydrothermal method, followed by high-temperature carbonization. As a result, the modulation of doping amount of glucose injection solution (Glucose) could effectively manipulate the encapsulation degree of GDC coating on VS2 nanosheets, further implementing the EM response mechanisms of the VS2/GDC hybrids (coupling effect of conductive loss, interfacial polarization, relaxation, dipole polarization, defect engineering and multiple reflections and absorptions) through regulating the conductivity and constructing multi-interface heterostructures, as reflected by the enhanced EMW absorption performance to a great extent. The minimum reflection loss (Rmin) of VS2/GDC hybrids could reach −52.8 dB with a thickness of 2.7 mm at 12.2 GHz. Surprisingly, compared with pristine VS2, the EAB of the VS2/GDC hybrids increased from 2.0 to 5.7 GHz, while their environmental stability was effectively enhanced by virtue of GDC doping. Obviously, this work provides a promising candidate to realize frequency band tunability of EMW absorbers with exceptional performance and environmental stability. | Keywords: | Broadband absorption Environmental stability Multi-interface heterostructures VS2s/GDC hybrids |
Publisher: | Elsevier | Journal: | Journal of materiomics | ISSN: | 2352-8478 | DOI: | 10.1016/j.jmat.2022.12.003 | Rights: | © 2023 The Authors. Published by Elsevier B.V. on behalf of The Chinese Ceramic Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). The following publication Wang, H., Zhang, H., Cheng, J., Liu, T., Zhang, D., Zheng, G., ... & Cao, M. (2023). Building the conformal protection of VB-group VS2 laminated heterostructure based on biomass-derived carbon for excellent broadband electromagnetic waves absorption. Journal of Materiomics, 9(3), 492-501 is availale at https://doi.org/10.1016/j.jmat.2022.12.003. |
| Appears in Collections: | Journal/Magazine Article |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 1-s2.0-S2352847823000011-main.pdf | 2.8 MB | Adobe PDF | View/Open |
Page views
148
Last Week
10
10
Last month
Citations as of Nov 9, 2025
Downloads
47
Citations as of Nov 9, 2025
SCOPUSTM
Citations
106
Citations as of Dec 19, 2025
WEB OF SCIENCETM
Citations
106
Citations as of Dec 18, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



