Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/1314
PIRA download icon_1.1View/Download Full Text
Title: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
Authors: Wang, WC
Chau, KW 
Cheng, C
Qiu, L
Issue Date: 15-Aug-2009
Source: Journal of hydrology, 15 Aug. 2009, v. 374, no. 3-4, p. 294-306
Abstract: Developing a hydrological forecasting model based on past records is crucial to effective hydropower reservoir management and scheduling. Traditionally, time series analysis and modeling is used for building mathematical models to generate hydrologic records in hydrology and water resources. Artificial intelligence (AI), as a branch of computer science, is capable of analyzing long-series and large-scale hydrological data. In recent years, it is one of front issues to apply AI technology to the hydrological forecasting modeling. In this paper, autoregressive moving-average (ARMA) models, artificial neural networks (ANNs) approaches, adaptive neural-based fuzzy inference system (ANFIS) techniques, genetic programming (GP) models and support vector machine (SVM) method are examined using the long-term observations of monthly river flow discharges. The four quantitative standard statistical performance evaluation measures, the coefficient of correlation (R), Nash–Sutcliffe efficiency coefficient (E), root mean squared error (RMSE), mean absolute percentage error (MAPE), are employed to evaluate the performances of various models developed. Two case study river sites are also provided to illustrate their respective performances. The results indicate that the best performance can be obtained by ANFIS, GP and SVM, in terms of different evaluation criteria during the training and validation phases.
Keywords: Monthly discharge time series forecasting
Autoregressive moving-average (ARMA)
Artificial neural network (ANN)
Adaptive neural-based fuzzy inference system (ANFIS)
Genetic programming (GP)
Support vector machine (SVM)
Publisher: Elsevier
Journal: Journal of hydrology 
ISSN: 0022-1694
DOI: 10.1016/j.jhydrol.2009.06.019
Rights: Journal of Hydrology © 2009 Elsevier B.V. The journal web site is located at http://www.sciencedirect.com.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
JH8.pdfPre-published version807.45 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

159
Last Week
2
Last month
Citations as of May 22, 2022

Downloads

2,809
Citations as of May 22, 2022

SCOPUSTM   
Citations

573
Last Week
4
Last month
3
Citations as of May 12, 2022

WEB OF SCIENCETM
Citations

503
Last Week
0
Last month
6
Citations as of May 19, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.