Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/96019
PIRA download icon_1.1View/Download Full Text
Title: A fiducial-aided data fusion method for the measurement of multiscale complex surfaces
Authors: Wang, S 
Cheung, CF 
Liu, M 
Issue Date: Jul-2019
Source: International journal of advanced manufacturing technology, July 2019, v. 103, no. 1-4, p. 1381-1389
Abstract: Multiscale complex surfaces, possessing high form accuracy and geometric complexity, are widely used for various applications in fields such as telecommunications and biomedicines. Despite the development of multi-sensor technology, the stringent requirements of form accuracy and surface finish still present many challenges in their measurement and characterization. This paper presents a fiducial-aided data fusion method (FADFM), which attempts to address the challenge in modeling and fusion of the datasets from multiscale complex surfaces. The FADFM firstly makes use of fiducials, such as standard spheres, as reference data to form a fiducial-aided computer-aided design (FA-CAD) of the multiscale complex surface so that the established intrinsic surface feature can be used to carry out the surface registration. A scatter searching algorithm is employed to solve the nonlinear optimization problem, which attempts to find the global minimum of the transformation parameters in the transforming positions of the fiducials. Hence, a fused surface model is developed which takes into account both fitted surface residuals and fitted fiducial residuals based on Gaussian process modeling. The results of the simulation and measurement experiments show that the uncertainty of the proposed method was up to 3.97 × 10−5 μm based on a surface with zero form error. In addition, there is a 72.5% decrease of the measurement uncertainty as compared with each individual sensor value and there is an improvement of more than 36.1% as compared with the Gaussian process-based data fusion technique in terms of root-mean-square (RMS) value. Moreover, the computation time of the fusion process is shortened by about 16.7%. The proposed method achieves final measuring results with better metrological quality than that obtained from each individual dataset, and it possesses the capability of reducing the measurement uncertainty and computational cost.
Keywords: Data fusion
Fiducial
Multi-sensor
Multiscale complex surface
Precision surface measurement
Ultra-precision machining
Publisher: Springer
Journal: International journal of advanced manufacturing technology 
ISSN: 0268-3768
EISSN: 1433-3015
DOI: 10.1007/s00170-019-03548-x
Rights: © Springer-Verlag London Ltd., part of Springer Nature 2019
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00170-019-03548-x.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Wang_Fiducial-aided_Data_Fusion_Method.pdfPre-Published version1.58 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

55
Last Week
0
Last month
Citations as of May 19, 2024

Downloads

52
Citations as of May 19, 2024

SCOPUSTM   
Citations

3
Citations as of May 17, 2024

WEB OF SCIENCETM
Citations

3
Citations as of Mar 28, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.