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Abstract 

Multiscale complex surfaces possessing high form accuracy and geometric 

complexity are widely used for various applications in fields such as 

telecommunications and biomedicines. Despite the development of multi-sensor 

technology, the stringent requirements of form accuracy and surface finish still 

present many challenges in their measurement and characterization. This paper 

presents a fiducial-aided data fusion method (FADFM), which attempts to address 

the challenge in modelling and fusion of the datasets from multi-scale complex 

surfaces. The FADFM firstly makes use of fiducials, such as standard spheres, as 

reference data to form a fiducial-aided computer-aided design (FA-CAD) of the 

multiscale complex surface so that the established intrinsic surface feature can be 

used to carry out the surface registration. A scatter-searching algorithm is employed 

to solve the nonlinear optimization problem, which attempts to find the global 

minimum of the transformation parameters in the transforming positions of the 

fiducials. Hence, a fused surface model is developed which takes into account both 

fitted surface residuals and fitted fiducial residuals based on Gaussian process 

modelling. The results of the simulation and measurement experiments show that 

the uncertainty of the proposed method was up to 3.97 x 10-5 μm based on a surface 

with zero form error. In addition, there is a 72.5% decrease of the measurement 

uncertainty as compared with each individual sensor value and there is an 

improvement of more than 36.1% as compared with the Gaussian process based data 

fusion technique in terms of root-mean-square ( RMS)  value. Moreover, the 

computation time of the fusion process is shortened by about 16.7%. The proposed 

method achieves final measuring results with better metrological quality than that 

obtained from each individual dataset, and it possesses the capability of reducing the 

measurement uncertainty and computational cost. 

Keywords: multiscale complex surface; precision surface measurement; data fusion; 

fiducial; multi-sensor 

1. Introduction

Freeform optics, especially multi-scale freeform surfaces, are widely used in

many fields such as advanced optics and biomedical engineering [1] due to their 
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excellent performance in optical functionalities [2]. To ensure the performance of 

these advanced surfaces, advanced manufacturing technologies such as 

ultra-precision diamond cutting, milling and precision measurement technology are 

critical for the quality control of these surfaces. Many measurement instruments and 

principles, ranging from coordinate measuring machine (CMM) and interferometers 

to scanning electron microscopy, have been applied to fulfill different requirements 

and improve reliability or reduce uncertainty. However, with the increasing 

complexity of freeform surfaces, relatively few of these devices are capable of 

fulfilling all the measuring tasks because of the limitation of their own technology in 

terms of levels of resolution, measuring range and accuracy. For example, light 

scanners do not easily measure structured surfaces with sharp features, and touch 

probe-based coordinate measuring machines cannot capture microstructure 

information. Hence, multi-sensor data fusion using a common format to represent 

several datasets obtained from different sensors was developed to evaluate the 

metrological evaluation [3]. 

There are two main operations in the data fusion process, which are registration 

and data fusion. Registration is a process that unifies the dataset sources into a 

common coordinate system. To achieve this, an imaging sensor, a white light sensor 

and a tactile scanning sensor were integrated into a Werth VideoCheck UA 400 

multi-sensor coordinate measurement machine[4]not only avoided misalignment but 

also possesses the ability to measure complex multi-scale surfaces. However, it is 

common for many measurements that the datasets are obtained from different 

coordinate measurement systems. Although the Iterative Closest Point (ICP) method 

[5] and its variants have been widely used for surface or discrete point 

matching/fitting [6], these methods are reported to be easily trapped in their local 

minimum and are very sensitive to the initial values of the given transferring 

parameters [7]. Some researchers have made use of intrinsic independent and 

immovable surface features, such as curvatures [8-11], to find corresponding pairs 

among data sources. These approaches have achieved fruitful results but they are 

still limited by their uncertainty and sensitivity to the machined structure [12].  

The fusion process generates high quality unique information from all the datasets 

with different resolutions and different uncertainties in the overlapping area. Ye et al. 

[13] used the invariance of the curvature radius to obtain a good registration result 

and applied an optimal stitching planning method that is able to achieve a 

sub-micrometer level of stitching accuracy. The weighted fusion method [14, 15], 

which also sets the measured datasets in a linear system, has also been used in many 

studies, but the fusion results are obtained from minimizing the weighted 

summation of each system. Wang [16] analyzed four weighted fusion methods and 

their uncertainties were also investigated. The state-of-the-art-data fusion process 

focused on building models of the residuals of the datasets by using the Gaussian 

process [17, 18]. In this method, the residuals are defined by a linear measuring 

system so that the mean and covariance function of the Gaussian Process (GP) model 

can represent the fused results. However, these methods may be still used on simple 

surfaces, which are based on a linear system and are time-consuming. B-spline model 



is another developed technique to represent complex local geometry. Ren [19] 

employed B-spline to reconstruct a measured surface that had removed the residual. 

Results of the investigation indicate that this method has technological merit in terms 

of reducing computation cost and fusing complex surfaces. One drawback of the 

B-splines is that the unknown control points, or knots, require sophisticated optimal 

techniques. 

This paper therefore presents a new method called fiducial-aided data fusion 

method (FADFM), which addresses the key problems in the multi-sensor data fusion, 

including improvement of the accuracy and robustness of the surface registration, 

reducing uncertainty and computational cost of the fusion process. Comparison 

experiments have been conducted for the existing methods based on both simulation 

study and experimental testes so as to verify the validity of the proposed method. 

2. Fiducial-aided data fusion method 

The proposed FADFM was purposely developed to improve the quality of the 

dataset from the following two aspects: 

1) Enhance the surface registration step, which unifies different coordinate 

frames including that of the designed surface and those of the measuring 

datasets into one common coordinate frame.  

This method firstly makes use of fiducials as reference data to generate the 

fiducial aided CAD surface, which is provided for a robust process of surface 

registration. Fiducials such as standard balls are designed and mounted on the 

fixture and they are able to provide intrinsic surface features. 

2) Reduce the uncertainty and computational time in the fusion process. 

The measurement results of the fiducials can provide uncertainty information of 

the measuring instruments in their measuring workspace. The uncertainty 

information was firstly used to determine the prior information in the Gaussian 

process modelling and it was used to determine the weight of each dataset in the 

weighted mean fusion step. 

As shown in Fig. 1, the proposed FADFM is composed of three processes, which 

are surface registration, fusion, and the merging process. It starts with the generation 

of the fiducial-aided computer-aided design (FA-CAD) by using standard balls 

surrounding the surface with different heights. In the second step, the fiducials are 

measured in the different coordinate frames and are transformed so that the 

generated transformation spatial parameters are then used to transform the surfaces 

into a common coordinate system. Hence, the registration forms residuals of 

measured surfaces and the fiducials in different measuring processes are obtained. It 

is interesting to note that the accuracy of surface registration is further improved and 

a robust process is performed since the intrinsic surface feature patterns are 

registered. In the third step, the errors of fiducials serve as a reference to determine 

their own measuring uncertainty. The residual of surface registration in each 

measuring process is fused by a weighted mean fusion based on the Gaussian 

Process (GP). In the final step, merging the fused surface error with the FA-CAD 

generated the fused surface. The core fusion algorithms are discussed in detail in the 



following sections.  

 

Fig. 1 Framework of the fiducial-aided data fusion 

2.1 Fiducial-aided surface registration 

Measured datasets from several uncorrelated sources are normally embedded in 

different coordinate systems. A surface registration process has to be carried out so 

that all the measured information is matched and unified in one common coordinate 

system. Matching is one of the most important and decisive processes in multi-sensor 

data fusion. It can be summarized as searching for an optimal vector m with six 

spatial parameters so as to minimize by the least square function as shown in Eq. (1): 
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measured source, and T is the coordinate transformation matrix determined by 

transformation parameter vector m = (α,β,γ,Tx,Ty,Tz)’, the first three parameters are 

the rotary angles and the others are translational offsets.  

This nonlinear optimization problem (NLP) is able to be solved by using the 

Levenberg-Marquardt algorithm [20] or Gausss-Newton algrithm [21] by letting the 

Eq. (1) partial differential equal 0, i.e.: 
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However, these methods are easily trapped into their local minima and the 

results are sensitive to the initial starting search for the six spatial parameters. To 

ensure the robustness and accuracy of the registration and feature-based surface 

descriptions, fiducials are used to carry out the surface matching [11]. Firstly, the 

fiducials in different datasets serve as intrinsic surface features to achieve a global 

minimizer m by employing the OptQuest/NLP method which is a scatter searching 

method based on the multi-start framework [22] in Eq. (2). The description of the 

OptQuest/NLP method can be simply given by following the steps shown in Fig. 2. 



 

Fig. 2 Description of the Global Search Algorithm 

It is clear that the OptQuest/NLP algorithm consists of two key stages. In the first 

stage, the given known point m0 is used to run a NLP local solver so that an initial 

assessment of the radius of a basin of attraction can be recorded if the solver 

converges. Then the scatter search algorithm [23] is used to generate a group of trial 

points. These points are examined in a score function (penalty function). The best 

scored points are prior to run the local solver and the results and themselves are 

stored in a linked list. The remaining trial points are checked in stage two with some 

initialized parameters such as basins and threshold referred to as the objective 

function values under valuable m0 and the best start point. If the so-called trial points 

satisfy the distance and merit filter criteria, the solution list will be updated after a 

convergence of the local solver. Otherwise, the initialized threshold is increased in 

the loop. Finally, all the found solutions are sorted by an objective function from the 

lowest to the highest and the lowest solution is considered to be the global minimum
*

m found by the fiducials. Hence, Eq. (1) can be solved robustly and the surface 

registration can achieve better results. 

 

2.2 Fiducial-aided weighted mean fusion based on the Gaussian Process 

It is assumed that the residual results obtained from the last fiducial-aided surface 

registration are distributed as Eq. (3): 
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R x, y  is a d-vector of the k th residual results at points ( ) R dx, y   and 

( )f x,y  is the ‘true value’ that is being pursued in which the white noise is removed 

so that the normal distribution has 0 mean and k
  standard deviation. I  is the 



identity matrix. The Gaussian Process (GP) [24] is employed to estimate the unbiased
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where k
f


is the output values from the GP model predicted position, V and V
**  

are the variance-covariance matrix at input and the predicted positions, respectively. 

V
*  is the covariance between the input and the predicted positions.  

In the GP modeling, the zero mean function is used and the spectral Mixture 

kernel as described by Eq. (5) is chosen to model residual surface reconstruction:  
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where x,x'  are the inputs and evaluated positions with P = 2 dimensions, Q = 10 is 

the total numbers of mixture kernels, and q
  and 

p

q
v( )

are the mean P-vector and 

covariance P dimensional diagonal matrix of the q th kernel.  

Firstly, the fiducials (standard balls) in different measurement sources are 

evaluated and compared with the calibrated results with relatively higher accuracy 

so that the measurement uncertainty k
 '

in the whole measuring space can be 

achieved by Eq. (6): 
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where N is the number of fiducials and 
2

n k


,  denotes the variance of the n th ball in 

the k th datasets. These obtained uncertainties can serve as Gaussian prior so that the 

hyperparameters =
k k

  '
in Eq. (4) are fixed. 

Secondly, other kernel hyperparameters can be trained by minimizing the 

negative log marginal likelihood function by using BFGS/nonlinear conjugate 

gradients in the MATLAB toolbox [25]. 

Finally, a total of K datasets with different resolutions and sizes are given; the 

fused surface residuals can be derived as: 
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where k
w  is the designed weight of each dataset source. 

For the simple linear system expressed in Eq. (7), the uncertainty variance of the 

fused result can be denoted as:  
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In order to obtain the minimum uncertainty, using the constrained nonlinear 

program conditions to solve the minimum solution of Eq. (8), the calculated weight 

can be set as: 
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3. Experimental Investigation 

3.1 Simulation and discussion 

The two main steps of the proposed method are fiducial-aided surface 

registration and fiducial-aided residual error fusion. A case study on two complex 

surfaces was designed and embedded in the same fiducial-aided structure. One 

optical freeform surface was the sinusoidal surface as defined by: 
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Another surface was a more complex sinusoidal surface superimposed with 

micro-lens arrays as given by: 
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where ( , )p qm n
 

are the locations of the micro-lens which distribute in the grid 

[ 6,6], [ 4,4]x y −  −  with p=7 and q=5; 8.5r = mm and 8.48 = mm are the lens 

radius and offset respectively. 

There were six fiducials (standard balls with a diameter of 10 mm) that were 

designed surrounding the designed surface. The coordinates of the centers were (−6, 

10, 14.5), (0, 10, 15), (10, 0, 15.5), (6, −10, 14.5), (0, −10, 15.5), (−6, −10, 15) (unit is mm) 

in the coordinate frame of the designed surface. Fig. 3 shows the two designed 

surfaces and the embedded fiducials. 



 

Fig. 3 Designed fiducial-aided (a) sinusoidal surface (b) micro-lens 

In this case, two different sensors were used to measure the surfaces. Measuring 

noise with standard deviations of 1 μm and 5 μm were added respectively to the 

designed surface and fiducials so as to generate the measured datasets. Furthermore, 

the machined errors of the surfaces were set to zero. The measured points cloud of 

the surface denoted S1 was obtained with high-accuracy datasets and uniformly 

sampled with a spacing of 0.5 mm, and S2 was sampled with a spacing of 0.2 mm in 

the low-accuracy datasets. Then S1 and S2 were transformed with two different 

arbitrary known vectors m = (α, β,γ,Tx,Ty,Tz)’ as mentioned in Eq. (1) so that S1 and 

S2 were located in different coordinate frames with different uncertainties under 

different resolutions. 

Fig. 4 shows the process of fiducial-aided surface registration by taking the 

micro-lens as an example. Both S1 and S2 were firstly transformed into the 

coordinate frame of FA-CAD by using the fiducials. Two surface residuals were then 

achieved after the surface registration. The GP model was used to reconstruct the 

measured residuals with the known measured uncertainty according to the 

measured results of the fiducials. The points were then resampled on the fused 

weighted mean system. 



 

Fig. 4 Process of fiducial-aided surface registration 

 

In order to evaluate the robustness and accuracy of the fiducial-aided surface 

registration, a total of 500 iterations of matching were repeated in the surface 

matching process using both the popular ICP and the proposed method. The results 

of the mean errors of the evaluated vector m for its six spatial parameters are shown 

in Fig. 5. It is clear that the proposed method performed better in terms of surface 

registration. This is due to the fact that the fiducials create intrinsic surface features 

which enhance the robustness of the registration process. 

 

Fig. 5 Accuracy of the fiducial-aided surface registration compared with the ICP method in 

terms of six spatial parameters; α, β,γ are in micro-radians, and Tx, Ty, Tz are in micrometers 



In the final stage, the performance of the FADFM was examined as compared 

with the result of the GP-based fusion method (GPBFM) which had no prior 

information of the uncertainty. It is noted that zero machined error was added to the 

surface, so the fused result should be close to zero. The simulation process was run 

using MATLAB software on an Intel Core i7 CPU 3.60 GHz PC with 16 GB of RAM.  

There were 640 points on S1 and 4,000 points on S2. A total of 60,000 points 

(300×200 in x and y directions) were sampled on the fused model. Fig. 6 shows the 

map of the fused form error. Table 1 shows the running time and fusion results by 

using the mean of root − mean − square (RMS) and 𝑝𝑒𝑎𝑘 − 𝑡𝑜 − 𝑣𝑎𝑙𝑙𝑒𝑦 (PV) values 

after 50 repeated simulations. The results clearly show that the surface residuals 

sharply decreased over the original measurement results and the computation time 

was slightly shortened. 

 

Fig. 6 Fused results of sinusoidal surfaces using two different fusion methods: (a) 

fiducial-aided weighted mean fusion (b) GP-based fusion method 

Table 1 Fusion results of the designed surface based on different fusion models after 50 simulations 

 Sinusoidal surfaces Micro- lens 

 FADFM GPBFM FADFM GPBFM 

Mean of RMS (μm) 3.97E-5 9.61E-02 2.75E-05 8.38E-02 

Mean of PV (μm) 0.75 5.82 0.49 5.09 

Mean of Time (s)     29.2    34.5    35.4     39.8 

Notes: FADFM means fiducial aided data fusion method. GPBFM means GP-based fusion method. 

3.2 Discussion 

From the simulations shown in Fig. 6 and Table 1, the proposed method 

performed much better than the GPBFM. One reason is that the step of the surface 

registration is more robust with a lower uncertainty than the performance of the ICP 

method (see Fig. 5). Another reason is that enough information is used for the 

optimization in the core operations of the Gaussian process modelling. 

In the FADFM, the RMS values in the two complex surfaces were reduced to 3.97 



x 105 μm, and such low uncertainty indicates that the proposed FADFM almost 

found the ‘accurate value’ of the residual errors, which was zero in this case. On the 

other hand, the GPBFM also performed well although it only obtained 𝑅𝑀𝑆 values 

up to 9.61 x 102 μm that were several thousand times larger than that for the FADFM. 

The computational time of the fusion process was shortened by about 16.7% in 

FADFM, although both of the methods employed spectral mixture kernels which just 

require 1( )P PO PN + operation [20]. This is due to the fact that the parameters to be 

optimized were decreased in the FADFM as compared with the GPBFM. It is clear 

from the simulated results that the proposed method has good capability of fusing 

datasets.  

However, it is interested to note that the obtained 𝑝𝑒𝑎𝑘 − 𝑡𝑜 − 𝑣𝑎𝑙𝑢𝑑𝑒 (PV) 

values in FADFM (up to 0.75 μm) was still relative large. This is due to the fact that 

one of the measurement datasets contained a lot of measuring noise, which caused 

the datasets to deviate from the true value due to bias. This is one of the limitations 

of data fusion that the fusion does not perform as well as expected when one of the 

datasets has large errors. The positive side is that the 𝑃𝑉  values were at an 

acceptable level because of the balance of the weighted mean method and the 

uncertain information of the fiducials. Future work should focus on analyzing the 

effect of systematic errors in the datasets affecting the fusion results. 

3.3 Measurement experiment 

A fiducial-aided sinusoidal surface was machined to check the real surface fusion. 

The basic principle is that there are at least three non-collinear fiducials to provide 

the positions information. In order to reduce the systematic error, four standard balls 

were used as fiducials and the positions of each ball in FA-CAD are calibrated by a 

fiber sensor in the coordinate measuring machine (CMM) (Werth Videocheck from 

Gießen, Germany ) and the centres of the fiducials are listed in Table 2. Fig. 7(b) and 

Fig. 7(c) show details of the measured surface and the experimental setup. 

Table 2 Positions of the centers of the fiducials in the designed model 

Sphere X (mm) Y (mm) Z (mm) 

1 -4.71498 -84.30512 8.97918 

2 83.70395 -5.64727 4.08088 

3 3.73789 83.85195 8.58972 

4 -83.93586 5.17532 4.07039 

   

Fig. 7(a) shows the measuring process in a multi-sensor coordinate measuring 

machine (Werth Videocheck from Gießen, Germany) and the measured surface. The 

CMM is equipped with two types of sensors including the WFP (fiber sensor) and 

the TP200 (trigger probe) which are operated in a clean, thermally controlled, and 

stable environment.  



 

Fig. 7 Measurement of a machined surface (a) measurement process (b) measured surface (c) 

fiducial aided fixture with the machined workpiece 

A total of 2,184 points and 9,063 points were uniformly sampled on the entire 

surface by the sensor of WFP and the TP200 respectively. In addition, 49 points were 

sampled on each of the standard balls. Fig. 8 shows examples of the measured 

fiducials and their position errors as magnified 100 times with different sensors. 

 

Fig. 8 Measured points and their position errors (error vectors ×100) on the fiducials (a) 

sampled by WFP (b) sampled by TP200 

 

According to Eq. (6), the measuring uncertainty with WFP and TP200 can be 

easily calculated as: 
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After the process of fiducial-aided surface registration, the surface residual errors 

are given in Fig. 9. In order to obtain the information of the fused result, a total of 

9,600 (160×60) points were modeled in the grid [ 35,35], [ 13,13]x y −  − . Both the 



fused results resulting from FADFM and GPBFM are given in Fig. 10. The RMS and 

PV values of the fused result as well as the dataset sources are listed in Table 3. It is 

worth noting that the computation time of the two methods was 10 seconds. 

 

Fig. 9 Residual errors of the machined surface according to (a) TP200 sensor (b) WFP sensor 

 

Fig. 10 The fused result of the two methods (a) results of FADFM (b) result of GPBFM 

Table 3 Form errors of the machined surface 

  FADFM GPBFM TP200 WPF 

Mean of RMS (μm) 3.04 4.2 11.5 10.2 

Mean of PV (μm) 32.4 50.7 65.9 64.5 

 

From the table immediately above, it is clear that there is a sharp decrease (72.5%) 

of the measurement uncertainty from each individual sensor up to 11.5 μm to the 

fused result down to 3.04 μm, which indicates that both of the two methods achieve 

good results of data fusion. In addition, the proposed FADFM exhibited better 

performance since there is an improvement of 38.2% (from 4.2 μm to 3.04 μm) for the 

RMS values and 36.1% (from 50.7 μm to 32.4) in terms of the PV values.  

On the other hand, the fused results show that the residual errors fluctuate 

sharply in the micrometer range in the grid of the whole error surface according to 

Fig. 10 as compared with the relatively smooth error surface as shown in Fig. 9. This 

is due to the fact that an inadequate number of points were sampled from the sensors 

and adequate points were sampled in the fused error surface so that the uncertainties 

in the fusion models were lower.  

 



4 Conclusion 

This paper presents a fiducial-aided data fusion method (FADFM) for the 

measurement of multiscale complex surfaces. A specific fiducial-aided CAD of the 

designed surface was generated by integrating the designed surface into a 

fiducial-aided fixture with the workpiece mounted on it. To address the key 

problems in the multi-sensor data fusion, the fiducial aided CAD was employed to 

carry out two main steps: the fiducial aided surface registration, and a priori 

information based Gaussian process modelling data fusion. A scatter searching 

algorithm was employed to solve the nonlinear optimization problem to find the 

global minimum of the transformation parameters in the transforming positions of 

the fiducials. Hence, a Gaussian Spectral Mixture kernel was also used to reconstruct 

the residuals of the datasets and the weighted mean was then determined by the 

fiducials, which were used to fuse the datasets.  

The simulation results show that the uncertainty of the proposed method was 

reduced up to 3.97 x 105 μm based on the condition that the surface with zero form 

error. In addition, the computational time of the fusion process was shortened by 

about 16.7 of the proposed method as compared with the non-prior information 

based Gaussian process modelling data fusion method. There was still one limitation 

but it was common in the data fusion in the proposed method. However, this 

limitation has been improved with the aid of the prior uncertainty of the measured 

datasets in a weight mean model.  

The results of the actual measurement experiments show that the proposed 

fusion method performed with a sharp decrease (72.5%) of the measurement 

uncertainty as compared with each individual sensor in terms of the RMS value, and 

there was an improvement of 38.2% in the RMS values and 36.1% (from 50.7 μm to 

32.4) in terms of thePV values as compared with the Gaussian process based data 

fusion method.  

The proposed FADFM is able to improve the Gaussian process modelling based 

data fusion method in terms of reducing measurement uncertainty and 

computational cost; it also narrows the limitation caused by the large bias of the 

datasets. Further research should address the limitation by taking into account the 

systematic error of the datasets. 
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