Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/94230
PIRA download icon_1.1View/Download Full Text
Title: Modeling of pitting damage-induced ultrasonic nonlinearity in AL-Whipple shields of spacecraft : theory, simulation, and experimental validation
Authors: Cao, W
Xu, L 
Su, Z 
Pang, B
Chi, R
Wang, L
Wang, X
Issue Date: 1-Oct-2021
Source: International journal of mechanical sciences, 1 Oct. 2021, v. 207, 106659
Abstract: Pitting damage in the Whipple shield of spacecraft, engendered by a hypervelocity impact (HVI, exceeding 3.0 km/s), is a specific damage modality in large-scale spacecraft (e.g., Space Station). Typically, it features multitudinous craters and cracks disorderedly scattered over a wide region, accompanied with a diversity of microstructural damages (e.g., dislocation plasticity, micro-voids and cracks). This damage modality induces highly complex, mutually-interfering wave scattering in the received ultrasonic waves, making signal interpretation a daunting task, let alone the quantitative characterization of a pitted region. With this motivation, a dedicated modeling technique is proposed to scrutinize the modulation mechanism of various modalities of pitting damage on the probing ultrasonic waves, based on retrofitted nonlinear constitutive equations by comprehensively considering all nonlinearities originated from different damage sources (e.g., inherent material imperfections, as well as the above HVI-induced intensified plasticity and micro-cracks, etc.). On this basis, a quantitative correlation between the nonlinear features (i.e., second harmonics) of ultrasonic waves and the pitting damage severity is established. The modeling technique is experimentally corroborated, and the results demonstrate good consistency in between, revealing that: (1) the proposed modeling approach is feasible to faithfully simulate and precisely evaluate pitting damage-incurred nonlinearities manifested in ultrasonic waves; (2) the ultrasonic nonlinearity intensifies with the increase of pitting damage severity; and (3) the detection sensibility and cumulative effect of second harmonics are related to the “internal resonance” conditions, representing by the excitation frequency. This study yields a structural health monitoring strategy for accurately characterizing pitting-type damage at an embryo stage and surveilling material deterioration progress continuously.
Keywords: Finite element modeling
Hypervelocity impact
Pitting damage
Quantitative characterization
Ultrasonic nonlinearity
Publisher: Pergamon Press
Journal: International journal of mechanical sciences 
ISSN: 0020-7403
EISSN: 1879-2162
DOI: 10.1016/j.ijmecsci.2021.106659
Rights: © 2021 Elsevier Ltd. All rights reserved.
© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.
The following publication Cao, W., et al. (2021). "Modeling of pitting damage-induced ultrasonic nonlinearity in AL-Whipple shields of spacecraft: Theory, simulation, and experimental validation." International Journal of Mechanical Sciences 207: 106659 is available at https://dx.doi.org/10.1016/j.ijmecsci.2021.106659.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Xu_Modeling_Pitting_Damage-Induced.pdfPre-Published version3.32 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

47
Last Week
1
Last month
Citations as of May 5, 2024

Downloads

26
Citations as of May 5, 2024

SCOPUSTM   
Citations

6
Citations as of Apr 26, 2024

WEB OF SCIENCETM
Citations

6
Citations as of May 2, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.