Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/94162
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.contributorResearch Institute for Sustainable Urban Developmenten_US
dc.creatorChen, Zen_US
dc.creatorLiu, Yen_US
dc.creatorYu, Wen_US
dc.creatorHe, Qen_US
dc.creatorNi, Men_US
dc.creatorYang, Sen_US
dc.creatorZhang, Sen_US
dc.creatorTan, Pen_US
dc.date.accessioned2022-08-11T01:07:31Z-
dc.date.available2022-08-11T01:07:31Z-
dc.identifier.issn2352-152Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/94162-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2021 Elsevier Ltd. All rights reserved.en_US
dc.rightsThe following publication Chen, Z., Liu, Y., Yu, W., He, Q., Ni, M., Yang, S., . . . Tan, P. (2021). Cost evaluation and sensitivity analysis of the alkaline zinc-iron flow battery system for large-scale energy storage applications. Journal of Energy Storage, 44, 103327 is available at https://dx.doi.org/10.1016/j.est.2021.103327.en_US
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.subjectLarge-scale energy storageen_US
dc.subjectSensitivity analysisen_US
dc.subjectSystem costen_US
dc.subjectZinc-iron redox flow batteryen_US
dc.titleCost evaluation and sensitivity analysis of the alkaline zinc-iron flow battery system for large-scale energy storage applicationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume44en_US
dc.identifier.doi10.1016/j.est.2021.103327en_US
dcterms.abstractAlkaline zinc-iron flow batteries attract great interest for remarkable energy density, high safety, environmentally benign. However, comprehensive cost evaluation and sensitivity analysis of this technology are still absent. In this work, a cost model for a 0.1 MW/0.8 MWh alkaline zinc-iron flow battery system is presented, and a capital cost under the U.S. Department of Energy's target cost of 150 $ per kWh is achieved. Besides, the effects of electrode geometry, operating conditions, and membrane types on the system cost are investigated. The results illustrate that a low flow rate and thin electrodes with high porosity contribute to low capital costs under low current densities. Furthermore, the porous polybenzimidazole (PBI) membrane is more cost-effective than Nafion 212 membrane. This work provides an integrated estimation for the zinc-iron flow battery system, demonstrating its tremendous potential for grid-level energy storage applications.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of energy storage, Dec. 2021, v. 44, 103327en_US
dcterms.isPartOfJournal of energy storageen_US
dcterms.issued2021-12-
dc.identifier.scopus2-s2.0-85122825263-
dc.identifier.eissn2352-1538en_US
dc.identifier.artn103327en_US
dc.description.validate202208 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera1626-
dc.identifier.SubFormID45684-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Chen_Cost_Evaluation_Zinc-iron.pdfPre-Published version2.46 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

56
Last Week
2
Last month
Citations as of May 19, 2024

Downloads

11
Citations as of May 19, 2024

SCOPUSTM   
Citations

14
Citations as of May 17, 2024

WEB OF SCIENCETM
Citations

14
Citations as of May 16, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.