Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/94065
PIRA download icon_1.1View/Download Full Text
Title: A general simple method for calculating consolidation settlements of layered clayey soils with vertical drains under staged loadings
Authors: Yin, JH 
Chen, ZJ 
Feng, WQ
Issue Date: Aug-2022
Source: Acta geotechnica, Aug. 2022, v. 17, no. 8, p. 3647-3674
Abstract: It is well known that the calculation of consolidation settlements of clayey soils shall consider creep compression in both “primary” consolidation and so-called secondary consolidation periods. Rigorous Hypothesis B method is a coupled method and can consider creep compression in the two periods. But this method needs to solve a set of nonlinear partial differential equations with a proper elastic viscoplastic (EVP) constitutive model so that this method is not easy to be used by engineers. Recently, Yin and his coworkers have proposed a simplified Hypothesis B method for single and two layers of soils. But this method cannot consider complicated loadings such as loading, unloading and reloading. This paper proposes and verifies a general simple method with a new logarithmic function for calculating consolidation settlements of viscous clayey soils without or with vertical drains under staged loadings such as loading, unloading and reloading. This new logarithmic function is suitable to cases of zero or very small initial effective stress. Equations of this simple method are derived for complicated loading conditions. This method is then used to calculate consolidation settlements of clayey soils in three typical cases: Case 1 is a single soil layer without vertical drains under loading only; Case 2 is a two-layered soil profile with vertical drains subjected to loading, unloading and reloading; and Case 3 is a real case of a test embankment on seabed of four soil layers installed with vertical drains under three stages of loading. Settlements of all three cases using the new general simple methods are compared with values calculated using rigorous fully coupled finite element method (FEM) with an elastic viscoplastic (EVP) constitutive model (Cases 1 and 2) and measured data for Case 3. It is found that the calculated settlements are in good agreement with values from FEM and/or measured data. It is concluded that the general simple method is suitable for calculating consolidation settlements of layered viscous clayey soils without or with vertical drains under complicated loading conditions with good accuracy and also easy to use by engineers using spreadsheet calculation.
Keywords: Clayey soil
Consolidation
Creep
Elastic viscoplastic
Settlement
Time-dependent
Publisher: Springer
Journal: Acta geotechnica 
ISSN: 1861-1125
EISSN: 1861-1133
DOI: 10.1007/s11440-021-01318-2
Rights: © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s11440-021-01318-2.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Yin_Method_Calculating_Consolidation.pdfPre-Published version1.4 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

76
Last Week
1
Last month
Citations as of May 5, 2024

Downloads

56
Citations as of May 5, 2024

SCOPUSTM   
Citations

12
Citations as of Apr 26, 2024

WEB OF SCIENCETM
Citations

11
Citations as of May 2, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.