Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/93861
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorFeng, Xen_US
dc.creatorLi, Ben_US
dc.creatorMa, Sen_US
dc.date.accessioned2022-08-03T01:23:59Z-
dc.date.available2022-08-03T01:23:59Z-
dc.identifier.issn0036-1429en_US
dc.identifier.urihttp://hdl.handle.net/10397/93861-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2021 Society for Industrial and Applied Mathematicsen_US
dc.rightsThe following publication Feng, X., Li, B., & Ma, S. (2021). High-order Mass-and Energy-conserving SAV-Gauss Collocation Finite Element Methods for the Nonlinear Schrödinger Equation. SIAM Journal on Numerical Analysis, 59(3), 1566-1591 is available at https://doi.org/10.1137/20M1344998en_US
dc.subjectError estimatesen_US
dc.subjectHigh-order conserving schemesen_US
dc.subjectMass- and energy-conservationen_US
dc.subjectNonlinear Schrödinger equationen_US
dc.subjectSAV-Gauss collocation finite element methoden_US
dc.titleHigh-order mass- and energy-conserving SAV-Gauss collocation finite element methods for the nonlinear Schrödinger equationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1566en_US
dc.identifier.epage1591en_US
dc.identifier.volume59en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1137/20M1344998en_US
dcterms.abstractA family of arbitrarily high-order fully discrete space-time finite element methods are proposed for the nonlinear Schrödinger equation based on the scalar auxiliary variable formulation, which consists of a Gauss collocation temporal discretization and the finite element spatial discretization. The proposed methods are proved to be well-posed and conserving both mass and energy at the discrete level. An error bound of the form O(hp + τk+1) in the L∞(0, T; H1)-norm is established, where h and τ denote the spatial and temporal mesh sizes, respectively, and (p, k) is the degree of the space-time finite elements. Numerical experiments are provided to validate the theoretical results on the convergence rates and conservation properties. The effectiveness of the proposed methods in preserving the shape of a soliton wave is also demonstrated by numerical results.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on numerical analysis, 2021, v. 59, no. 3, p. 1566-1591en_US
dcterms.isPartOfSIAM journal on numerical analysisen_US
dcterms.issued2021-
dc.identifier.scopus2-s2.0-85108635603-
dc.identifier.eissn1095-7170en_US
dc.description.validate202208 bcfcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberAMA-0039-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS54045313-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
20m1344998.pdf2.89 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

316
Last Week
1
Last month
Citations as of May 12, 2024

Downloads

76
Citations as of May 12, 2024

SCOPUSTM   
Citations

33
Citations as of May 16, 2024

WEB OF SCIENCETM
Citations

32
Citations as of May 16, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.