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HIGH-ORDER MASS- AND ENERGY-CONSERVING SAV-GAUSS
COLLOCATION FINITE ELEMENT METHODS FOR THE

NONLINEAR SCHRÖDINGER EQUATION∗

XIAOBING FENG† , BUYANG LI‡ , AND SHU MA§

Abstract. A family of arbitrarily high-order fully discrete space-time finite element methods
are proposed for the nonlinear Schrödinger equation based on the scalar auxiliary variable formu-
lation, which consists of a Gauss collocation temporal discretization and the finite element spatial
discretization. The proposed methods are proved to be well-posed and conserving both mass and
energy at the discrete level. An error bound of the form O(hp + τk+1) in the L∞(0, T ;H1)-norm is
established, where h and τ denote the spatial and temporal mesh sizes, respectively, and (p, k) is the
degree of the space-time finite elements. Numerical experiments are provided to validate the theoret-
ical results on the convergence rates and conservation properties. The effectiveness of the proposed
methods in preserving the shape of a soliton wave is also demonstrated by numerical results.
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1. Introduction. This paper is concerned with the development and analysis of
high-order fully discrete numerical methods for the following initial boundary value
problem of the nonlinear Schrödinger (NLS) equation:

i∂tu−∆u− f(|u|2)u = 0 in Ω × (0, T ],(1.1a)

u = 0 on ∂Ω × (0, T ],(1.1b)

u = u0 in Ω × {0},(1.1c)

where Ω ⊂ Rd is a polygonal or polyhedral domain with boundary ∂Ω, and u : Ω → C
is a complex-valued function, with i =

√
−1, and f : R+ → R is the derivative of some

function F : R+ → R. The best known examples are

f(s) = ±s
q−1
2 and F (s) = ± 2

q + 1
s
q+1
2 with q > 1,(1.2)

where the “−” and “+” cases are often referred to as defocusing and focusing models,
respectively. In the focusing case, the solution will blow up in L∞(Ω) within finite
time when the initial energy is negative; see [7, 34]. The NLS equation (1.1) arises
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SAV-GAUSS COLLOCATION FOR THE NLS EQUATION 1567

from many applications in physics and engineering, and is one of the fundamental
equations in mathematical physics [7, 34, 42, 26, 28].

It is well known that the solutions of (1.1) conserve mass and energy in the sense
that for all t ≥ 0

d

dt

∫
Ω

|u|2dx = 0 (mass conservation),(1.3)

d

dt

∫
Ω

(
1

2
|∇u|2 − 1

2
F (|u|2)

)
dx = 0 (energy conservation).(1.4)

The development of numerical methods that can retain these conservation properties
in numerical solutions is important for long-time numerical simulation and, therefore,
has been one of the research focuses in numerical approximation to the NLS equation.

There exists a large amount of literature on numerical solutions and numerical
analysis of the NLS equation; see [10, 32, 27, 21, 1, 2, 4, 5, 6, 35, 20, 24, 37, 14, 13].
To the best of our knowledge, all the existing mass- and energy-conserving methods
have only second-order accuracy in time and are of the Crank–Nicolson type. No
higher-order time-stepping schemes, which conserve both mass and energy, have been
reported in the literature. Moreover, the existing error estimates for nonlinearly im-
plicit schemes for the NLS equation generally require certain grid-ratio conditions.
The standard grid-ratio conditions in the literature are τ = o(h

d
4 ) for the cubic NLS

equation and τ = o(h
d
2 ) for general nonlinearity, where h and τ denote the spatial

and temporal mesh sizes. Karakashian and Makridakis [21, 22] proposed some contin-
uous and discontinuous space-time Galerkin finite element methods for the cubic NLS
equation and proved optimal-order convergence under a weaker grid-ratio condition
τk−1| lnh| → 0 in two dimensions, where k ≥ 2 is the degree of finite elements in
time. For the defocusing cubic NLS equation (or the focusing cubic NLS equation
with sufficiently small initial data), using the energy conservation of the numerical
scheme, error estimates were established without grid-ratio condition in [16, 36]. For
general nonlinearity (possibly focusing), Wang [35] established an error estimate for a
linearized semi-implicit scheme without grid-ratio condition; Henning and Peterseim
[19] established an error estimate for the nonlinearly implicit Crank–Nicolson finite el-
ement method without grid-ratio condition. Both [35] and [19] used an error splitting
technique in which they proved boundedness of the numerical solutions by establishing
an L∞-norm error estimate between the fully discrete and the semidiscrete-in-time
numerical solutions. The error splitting technique allows us to avoid grid-ratio con-
ditions in using the inverse inequality.

The objective of this paper is to develop a family of arbitrarily higher-order mass-
and energy-conserving fully discrete space-time finite element methods based on the
scalar auxiliary variable (SAV) formulation of the NLS equation, and to establish the
existence, uniqueness, and optimal-order convergence of numerical solutions without
grid-ratio condition. Two key ideas are utilized in our construction of the method.
First, the SAV reformulation of the NLS equation is used. This approach was intro-
duced in [30, 29] as an enhanced version of the invariant energy quadratization (IEQ)
approach [38, 39, 40, 41], for developing energy-decay methods for dissipative (gradi-
ent flow) systems. Here we adapt the SAV approach to the dispersive NLS equation,
and the SAV reformulation is essential to enable our methods to maintain the energy
conservation property at the discrete level. Second, the Gauss collocation method is
used for time discretization in the SAV formulation of the NLS equation. The method
can be viewed as an efficient implementation of the space-time finite element meth-
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1568 XIAOBING FENG, BUYANG LI, AND SHU MA

ods for the SAV formulation with Gauss quadrature in time. The Gauss collocation
method was combined with IEQ and SAV to preserve energy decay in solving phase
field equations in [3, 17, 18]. We adopt this method here to preserve mass conservation
without affecting the energy conservation structure of the SAV formulation.

The SAV formulation introduces new difficulties to error analysis for the NLS
equation due to the presence of ∂tu in the equation of r (see (2.2b)), which leads to a
consistency error of suboptimal order in time and introduces new difficulty in obtain-
ing the stability estimate. These difficulties are overcome by combining three tech-
niques. First, inspired by the error analysis of Karakashian and Makridakis [22], our
proof makes use of properties of the Legendre polynomials on each interval In, rewrit-
ing the Gauss collocation method into a space-time Galerkin finite element method,
which makes it easier to choose suitable test functions in the error estimation. Second,
we introduce a temporal Ritz projection and use a superapproximation result of the
temporal local L2 projection to eliminate the suboptimal temporal consistency error
caused by ∂tu in the equation of r. Third, we estimate the time derivative of the error
in H−1(Ω) using a duality argument, which leads to an optimal-order H1-norm error
estimate. We prove the existence, uniqueness, and optimal-order convergence of nu-
merical solutions based on Schaefer’s fixed point theorem in an L∞-neighborhood of
the exact solution. This allows us to avoid grid-ratio conditions for the NLS equation
with general nonlinearity.

The rest of this paper is organized as follows. In section 2, we present the SAV
reformulation of the NLS equation and introduce our SAV space-time Gauss colloca-
tion finite element method. In section 3, we first present an integral reformulation of
the proposed method and then establish its mass and energy conservation properties.
We also derive a consistency error estimate for the method, which is vitally used to
prove an error estimate in the subsequent section. In section 4, we first establish the
well-posedness of the numerical method and then prove an error bound of the form
O(hp + τk+1) in the energy norm, where τ and h denote the temporal and spatial
mesh sizes, respectively, with (p, k) denoting the degree of polynomials in the space-
time finite element method. Finally, in section 5, we present a few numerical tests to
validate the theoretical results, and to demonstrate the effectiveness of the proposed
method in preserving the shape of a soliton wave.

Throughout this paper, unless stated otherwise, C will be used to denote a generic
positive constant which is independent of τ , h, n, and N , but may depend on T and
the regularity of solution.

2. Formulation of the SAV-Gauss collocation finite element method.
In this section, we construct a Gauss collocation finite element method based on the
SAV reformulation of the NLS equation.

2.1. Function spaces. Let Hk(Ω), k ≥ 0, be the conventional complex-valued
Sobolev space of functions on Ω, and denote

L2(Ω) = H0(Ω) and H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω}.

We denote by (·, ·) and ‖·‖ the inner product and norm of the complex-valued Hilbert
space L2(Ω), respectively, defined by

(u, v) :=

∫
Ω

u v dx and ‖u‖ :=
√

(u, u).

For m, s ≥ 0 and 1 ≤ p ≤ ∞, the notation Wm,p(0, T ;Hs(Ω)) stands for the space-
time Sobolev space of functions which are Wm,p in time and Hs in space; see [11,
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SAV-GAUSS COLLOCATION FOR THE NLS EQUATION 1569

Chapter 5.9]. We abbreviate the norms of Hs(Ω) and Wm,p(0, T ;Hs(Ω)) as ‖ · ‖Hk
and ‖ · ‖Wm,p(In;Hs), respectively, omitting the dependence on Ω in the subscripts.

2.2. The SAV reformulation of (1.1). The SAV formulation of the NLS
equation (cf. [29]) introduces an SAV

r =
√∫

Ω
1
2F (|u|2)dx+ c0 with g(u) =

f(|u|2)√∫
Ω

1
2F (|u|2)dx+ c0

(2.1)

with a positive c0 (which guarantees that the function r has a positive lower bound),
and reformulate (1.1) as

i∂tu−∆u− rg(u)u = 0 in Ω × (0, T ],(2.2a)

dr

dt
= Re

(
1
2g(u)u, ∂tu

)
in Ω × (0, T ],(2.2b)

u = 0 on ∂Ω × (0, T ],(2.2c)

u = u0, r = r0 in Ω × {0},(2.2d)

where r0 =
√∫

Ω
1
2F (|u0|2)dx+ c0. The mass and energy conservation in the SAV

formulation are

d

dt

∫
Ω

|u|2dx = 0 and
d

dt

(
1

2

∫
Ω

|∇u|2dx− r2 + c0

)
= 0.(2.3)

2.3. Space-time finite element spaces. Let Th be a shape-regular and quasi-
uniform triangulation of Ω with mesh size h ∈ (0, 1) and {tn}Nn=0 be a uniform
partition of [0, T ] with the time step size τ ∈ (0, 1), where N is a positive integer and
hence τ = T

N . For an integer p ≥ 1 we denote by Qp the space of complex-valued
polynomials of degree ≤ p in space, and we denote by Sh the complex-valued Lagrange
finite element space subject to the triangulation of Ω, defined by

Sh =
{
v ∈ C(Ω) : v|K ∈ Qp for all K ∈ Th, v = 0 on ∂Ω

}
,

where C(Ω) denotes the space of complex-valued uniformly continuous functions on
Ω. Then Sh is a complex Hilbert space with the inner product (·, ·) and norm ‖ · ‖.

For an integer k ≥ 1, let Pk denote the space of real-valued polynomials of degree
≤ k in t. For a Banach space X, such as X = L2(Ω) or X = Sh, we define the
following tensor-product space:

Pk ⊗X := span
{
p(t)φ(x) : p ∈ Pk, φ ∈ X

}
=
{∑k

j=0t
jφj : φj ∈ X

}
.(2.4)

Moreover, let Ph : L2(Ω)→ Sh denote the L2 projection operator defined by(
w − Phw, vh

)
= 0 ∀ vh ∈ Sh ∀w ∈ L2(Ω).

The following stability properties are well known (cf. [8]):

‖Phw‖ ≤ ‖w‖ ∀w ∈ L2(Ω),(2.5a)

‖Phw‖H1 ≤ C‖w‖H1 ∀w ∈ H1
0 (Ω),(2.5b)

where C depends only on the shape regularity and quasi-uniformity of the mesh.
We also introduce the global space-time finite element spaces

Xτ,h = {vh ∈ C([0, T ];Sh) : vh|In ∈ Pk ⊗ Sh for n = 1, . . . , N},(2.6)

Yτ,h = {qh ∈ C([0, T ]) : qh|In ∈ Pk for n = 1, . . . , N}.(2.7)
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1570 XIAOBING FENG, BUYANG LI, AND SHU MA

2.4. SAV-Gauss collocation finite element method. Let cj and wj , j =
1, . . . , k, be the nodes and weights of the k-point Gauss quadrature rule in the interval
[−1, 1] (see [31, Table 3.1]), and let tnj = tn−1 + (1 + cj)τ/2, j = 1, . . . , k, denote the
Gauss points in the interval In = [tn−1, tn]. We define the following Gauss collocation
finite element method for (2.2).

Main Algorithm.
Step 1: Set u0

h := Ihu0 and r0
h := r0, where Ih is the Lagrange interpolation

operator onto the finite element space. Determine (uh, rh) ∈ Xτ,h × Yτ,h by the
following two steps.

Step 2: For n = 1, 2, . . . , N , define {(uh(tnj), rh(tnj))}kj=1 ⊂ Sh × R by solving
recursively (in n) the following nonlinear (algebraic) system:

i
(
∂tuh(tnj), vh

)
+
(
∇uh(tnj),∇vh

)
(2.8a)

−
(
rh(tnj)g(uh(tnj))uh(tnj), vh

)
= 0 ∀ vh ∈ Sh,

∂trh(tnj) =
1

2
Re
(
g(uh(tnj))uh(tnj), ∂tuh(tnj)

)
,(2.8b)

uh(tn−1) = un−1
h , and rh(tn−1) = rn−1

h .(2.8c)

Step 3: Set unh := uh(tn) and rnh := rh(tn).

Remark 2.1. (a) We note that in (2.8a) and (2.8b), ∂tuh(tnj) = ∂tuh(t)|t=tnj and
∂trh(tnj) = ∂trh(t)|t=tnj . Main Algorithm actually computes {(uh(tnj), rh(tnj))}kj=1

for each n ≥ 1; however, since any kth-order polynomial on In is uniquely determined
by its initial value at tn−1 and its values at the k Gauss points tnj , j = 1, . . . , k,
then the Gauss-point values generated by Main Algorithm uniquely determine the
pair (uh, rh) ∈ Xτ,h × Yτ,h.

(b) Each of (2.8a) and (2.8b) consists of nonlinear algebraic equations; note that
the test function vh can be different for different j’s, and one “initial condition” is
prescribed for each of uh and rh. The number of equations imposed is the same as
the degrees of freedom which equals the dimension of the space Pk ⊗ Sh for each n.

(c) Main Algorithm can be obtained by applying the Gauss quadrature rule (in
time) to a (continuous) space-time finite element method for (2.2); see section 3.1.

(d) In practical computation, we solve for the solution of the nonlinear scheme
(2.8) by Newton’s method: For given {(u`−1

h (tnj), r
`−1
h (tnj))}kj=1 ⊂ Sh × R, find{

(u`h(tnj), r
`
h(tnj))

}k
j=1
⊂ Sh × R

satisfying the linearized equations

i
(
∂tu

`
h(tnj), vh

)
+
(
∇u`h(tnj),∇vh

)
(2.9a)

=
(
r`h(tnj)g(u`−1

h (tnj))u
`−1
h (tnj), vh

)
+
(
r`−1
h (tnj)g1(u`−1

h (tnj))(u
`
h(tnj)− u`−1

h (tnj)), vh
)

+
(
r`−1
h (tnj)g2(u`−1

h (tnj))(ū
`
h(tnj)− ū`−1

h (tnj)), vh
)

∀ vh ∈ Sh,

∂tr
`
h(tnj) =

1

2
Re
(
g(u`−1

h (tnj))u
`−1
h (tnj), ∂tu

`
h(tnj)

)(2.9b)

+
1

2
Re
(
g1(u`−1

h (tnj))(u
`
h(tnj)− u`−1

h (tnj)), ∂tu
`−1
h (tnj)

)
,

+
1

2
Re
(
g2(u`−1

h (tnj))(ū
`
h(tnj)− ū`−1

h (tnj)), ∂tu
`−1
h (tnj)

)
,
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SAV-GAUSS COLLOCATION FOR THE NLS EQUATION 1571

u`h(tn−1) = un−1
h , and r`h(tn−1) = rn−1

h ,

(2.9c)

where

g1(u) := ∂u[g(u)u] and g2(u) := ∂ū[g(u)u],

and ∂ū denotes the differentiation with respect to ū in the expression

g(u)u =
f(uū)u√∫

Ω
1
2F (uū)dx+ c0

.

The iteration in ` is set to stop when the desired tolerance error is achieved.

3. Conservation, stability, and consistency analysis.

3.1. A reformulation of scheme (2.8a)–(2.8b). In this subsection, we pres-
ent several integral identities and inequalities, including a reformulation of Main Al-
gorithm. These identities and inequalities will be used in the subsequent analysis of
existence, uniqueness, and convergence of numerical solutions.

Consider the interval In = [tn−1, tn]; then we define Pnτ : L2(In;L2(Ω))→ Pk−1⊗
L2(Ω) to be the L2 projection defined by∫

In

(u− Pnτ u, v) dt = 0 ∀ v ∈ Pk−1 ⊗ L2(Ω).(3.1)

Thus u − Pnτ u is orthogonal to all temporal polynomials of degree ≤ k − 1, which
means that if u ∈ Pk ⊗ L2(Ω), then

u− Pnτ u = φn−1Lk,(3.2)

where φn−1 ∈ L2(Ω) and

Lk(t) := L̂k

(
2t− tn−1 − tn

τ

)
(3.3)

is the shifted Legendre polynomial (orthogonal to polynomials of lower degree on In).
The temporal L2 projection operator Pnτ has the following approximation property
(cf. [9]):

max
t∈In
‖v − Pnτ v‖X ≤ Cτm max

t∈In
‖∂mt v‖X , 0 ≤ m ≤ k,(3.4)

for all v ∈ Ck([0, T ];X), where X = R or X = Hs(Ω) for some s ∈ R.
Since the k-point Gauss quadrature holds exactly for polynomials of degree 2k−1

(cf. [15, p. 222]), and the Gauss points tnj , j = 1, . . . , k, are the roots of the Legendre
polynomial Lk(t) (cf. [23, p. 33]), it follows that the following two identities hold:

∫
In

v(t)dt =
τ

2

k∑
j=1

v(tnj)wj ∀ v ∈ P2k−1 ⊗ Sh,(3.5)

v(tnj) = Pnτ v(tnj) ∀ v ∈ Pk ⊗ Sh.(3.6)
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1572 XIAOBING FENG, BUYANG LI, AND SHU MA

Setting vh = τ
2 vh(tnj)wj in (2.8a) and summing up the results for j = 1, . . . , k,

and using (3.5)–(3.6) in the first two terms yield the following integral identity:∫
In

i
(
∂tuh, vh

)
dt+

∫
In

(∇Pnτ uh,∇vh)dt(3.7)

− τ

2

k∑
j=1

wj(rh(tnj)g(uh(tnj))uh(tnj), vh(tnj)) = 0 ∀ vh ∈ Pk ⊗ Sh.

Similarly, multiplying (2.8b) by τ
2 qh(tnj)wj and summing up the results for j =

1, . . . , k, and using (3.5) in the first term, we have

∫
In

∂trhqhdt =
τ

2

k∑
j=1

wj
2

Re
(
g(uh(tnj))uh(tnj), ∂tuh(tnj) qh(tnj)

)
∀ qh ∈ Pk.(3.8)

(3.7)–(3.8) provides a reformulation of Main Algorithm. The above reformulation will
be crucially used later to show mass and energy conservations, as well as existence,
uniqueness, and convergence of numerical solutions.

From (3.2) we get

‖φn−1‖ =
1

|Lk(tn−1)|
‖uh(tn−1)− Pnτ uh(tn−1)‖

≤ C‖uh(tn−1)‖+ C

(
1

τ

∫
In

‖Pnτ uh(t)‖2dt

) 1
2

,

where we have used the inverse inequality in time. Thus, by using (3.2) again, we
obtain the following inequality:∫

In

‖uh‖2dt ≤ C
∫
In

‖Pnτ uh‖2dt+ Cτ‖uh(tn−1)‖2 ∀uh ∈ Pk ⊗ Sh.(3.9)

By using the two identities (3.5)–(3.6), one can also prove the following inequality:

τ

2

k∑
j=1

wj‖vh(tnj)‖2 =

∫
In

‖Pnτ vh(t)‖2dt ≤
∫
In

‖vh(t)‖2dt ∀ vh ∈ Pk ⊗ Sh.(3.10)

The inequalities (3.9)–(3.10) will be frequently used in the subsequent error analysis.

3.2. Mass and energy conservation properties. In this subsection, we prove
the following conservation properties of the numerical solution, which comprise the
first main theorem of this paper.

Theorem 3.1. Let (uh, rh) ∈ Xτ,h × Yτ,h be a solution of Main Algorithm, then
the following mass and energy conservations hold:

1

2
‖uh(tn)‖2 =

1

2
‖uh(t0)‖2 for n ≥ 1,

1

2
‖∇uh(tn)‖2 − |rh(tn)|2 + c0 =

1

2
‖∇uh(t0)‖2 − |rh(t0)|2 + c0 for n ≥ 1.
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Proof. Setting vh = uh ∈ Pk ⊗ Sh in (3.7) and taking the imaginary part yield

Im

∫
In

i
(
∂tuh, uh

)
dt = −Im

∫
In

(∇Pnτ uh,∇uh)dt(3.11)

+ Im

[
τ

2

k∑
j=1

wj(rh(tnj)g(uh(tnj)), |uh(tnj)|2)

]
= 0,

where we have used the definition of the projection operator Pnτ , which implies

Im

∫
In

(∇Pnτ uh,∇uh)dt = Im

∫
In

(∇Pnτ uh,∇Pnτ uh)dt = 0.

Then the mass conservation follows from (3.11) and the identity

Im

∫
In

i
(
∂tuh, uh

)
dt =

1

2
‖uh(tn)‖2 − 1

2
‖uh(tn−1)‖2.

Alternatively, setting vh = ∂tuh and qh = 2rh in (3.7) and (3.8), respectively, and
taking the real parts yield

Re

∫
In

(∇Pnτ uh,∇∂tuh)dt =
τ

2
Re

k∑
j=1

wj(rh(tnj)g(uh(tnj))uh(tnj), ∂tuh(tnj)),

(3.12)

|rh(tn)|2 − |rh(tn−1)|2 =
τ

2
Re

k∑
j=1

wj
(
rh(tnj)g(uh(tnj))uh(tnj), ∂tuh(tnj)

)
.(3.13)

Since

Re

∫
In

(∇Pnτ uh,∇∂tuh)dt = Re

∫
In

(Pnτ ∇uh,∇∂tuh)dt = Re

∫
In

(∇uh,∇∂tuh)dt

=
1

2
‖∇uh(tn)‖2 − 1

2
‖∇uh(tn−1)‖2,

it follows that

1

2
‖∇uh(tn)‖2 − 1

2
‖∇uh(tn−1)‖2(3.14)

=
τ

2
Re

k∑
j=1

wj
(
rh(tnj)g(uh(tnj))uh(tnj), ∂tuh(tnj)

)
.

Subtracting (3.13) from (3.14) yields

1

2
‖∇uh(tn)‖2 − |rh(tn)|2 =

1

2
‖∇uh(tn−1)‖2 − |rh(tn−1)|2 for n ≥ 1.(3.15)

Thus, the energy conservation holds. The proof is complete.

3.3. An upper bound of mass at internal stages. In this subsection, we
prove that the average mass of numerical solutions at internal stages has an upper
bound unconditionally (independent of the regularity of solutions). This property
furthermore strengthens the stability of numerical solutions when the exact solution
is not smooth (for example, close to blowup).
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1574 XIAOBING FENG, BUYANG LI, AND SHU MA

Theorem 3.2. Let (uh, rh) ∈ Xτ,h × Yτ,h be a solution of Main Algorithm, then
the following inequalities hold:

max
1≤n≤N

1

τ

∫
In

‖Pnτ uh‖2dt ≤ ‖uh(0)‖2,(3.16a)

max
1≤n≤N

max
1≤j≤k

‖uh(tnj)‖ ≤ C‖uh(0)‖,(3.16b)

where C is a constant independent of τ , h, and the regularity of the solution.

Proof. By the definition of the temporal L2 projection Pnτ , we get∫
In

‖Pnτ uh(t)‖2dt(3.17)

= Re

∫
In

(uh(t), Pnτ uh(t))dt

= Re (uh(tn−1), Pnτ uh(tn−1))τ + Re

∫
In

(∂tuh(t), (tn − t)Pnτ uh(t))dt

+ Re

∫
In

(uh(t), (tn − t)∂tPnτ uh(t))dt =: J1 + J2 + J3,

where we have interchanged the order of integration in deriving the second to last
equality. It can be shown (cf. [12]) that J2 = 0 and

J1 ≤
τ

2
‖uh(tn−1)‖2 +

τ

2
‖Pnτ uh(tn−1)‖2,

J3 = −τ
2
‖Pnτ uh(tn−1)‖2 +

∫
In

1

2
‖Pnτ uh(t)‖2dt.

Substituting the estimates of J1, J2, and J3 into (3.17) gives (3.16a).
Substituting (3.16a) into (3.9) and using the mass conservation property again,

we obtain
∫
In
‖uh‖2dt ≤ Cτ‖uh(0)‖2, and an application of the inverse inequality

yield (3.16b). The proof is complete.

3.4. Temporal and spatial Ritz projections. Let Inτ u and Inτ r be the tem-
poral Lagrange interpolation polynomials of u and r, respectively, interpolated at
the k + 1 points tn−1 and tnj , j = 1, . . . , k. It is well known that the following
approximation property (cf. [9]) holds:

max
t∈In

(
‖v − Inτ v‖X + τ‖∂t(v − Inτ v)‖X

)
≤ Cτm+1 max

t∈In
‖∂m+1
t v‖X(3.18)

for all v ∈ Cm+1([0, T ];X), 0 ≤ m ≤ k, and X = R or X = Hs(Ω) for some s ∈ R. We
also define a temporal Ritz projection operator Rnτ : W 1,∞(In;L2(Ω))→ Pk ⊗L2(Ω)
as follows: ∫

In

(∂t(u−Rnτ u), v)dt = 0 ∀ v ∈ Pk−1 ⊗ L2(Ω),(3.19)

u(tn−1)−Rnτ u(tn−1) = 0.(3.20)

By using this property and the shifted Legendre polynomials defined in (3.3), we can
express the temporal Ritz projection as

Rnτ u(t) = u(tn−1) +

k−1∑
j=0

∫
In
Lj(s)∂su(s)ds∫
In
|Lj(s)|2ds

∫ t

tn−1

Lj(s)ds,(3.21)
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which implies that if X ⊂ L2(Ω) is a Banach space and u ∈ W 1,∞(In;X), then
Rnτ u is automatically in Pk ⊗ X. It can be shown that Rnτ satisfies the following
approximation property; see [12, Lemma 3.3].

Lemma 3.3. Let X = R or Hs(Ω) for some s ≥ 0. For u ∈ Wm+1,∞(In;X),
with 0 ≤ m ≤ k, the following approximation property holds:

‖u−Rnτ u‖L∞(In;X) + τ‖∂t(u−Rnτ u)‖L∞(In;X) ≤ Cτm+1‖u‖Wm+1,∞(In;X).

In addition to the above optimal-order approximation result, we also have the
following superconvergence result.

Lemma 3.4 (a superapproximation property). Let X = R or Hs(Ω) for some
s ≥ 0. If w ∈W k,∞(In;W s,∞(Ω)) and v ∈ Pk−1 ⊗X, then

‖wv − Pnτ (wv)‖L2(In;X) ≤ Cτ‖v‖L2(In;X).

Proof. We only give a proof for the case X = Hs(Ω) because the other cases are
similar. By applying (3.4) with m = k, we have

‖wv − Pnτ (wv)‖L2(In;Hs) ≤ Cτ
1
2 ‖wv − Pnτ (wv)‖L∞(In;Hs)

≤ Cτk+ 1
2 ‖∂kt (wv)‖L∞(In;Hs)

≤ C
k−1∑
m=0

τk+ 1
2 ‖∂k−mt w∂mt v‖L∞(In;Hs) (since ∂kt v = 0)

≤ C
k−1∑
m=0

τk+ 1
2 ‖∂k−mt w‖L∞(In;W s,∞)‖∂mt v‖L∞(In;Hs)

≤ C
k−1∑
m=0

τk+ 1
2−m‖v‖L∞(In;Hs)

≤ Cτ 3
2 ‖v‖L∞(In;Hs)

≤ Cτ‖v‖L2(In;Hs).

Here we have used the inverse inequality in time twice. The proof is complete.

Finally, we also recall the (spatial) Ritz projection operator Rh : H1
0 (Ω) → Sh

defined by (
∇(w −Rhw),∇vh

)
= 0 ∀vh ∈ Sh ∀w ∈ H1

0 (Ω),

and the discrete Laplacian operator ∆h : Sh → Sh defined by

(∆hφh, χh) := −(∇φh,∇χh) ∀φh, χh ∈ Sh.(3.22)

It is known [8] that there hold the following identities:

Ph∆v = ∆hRhv ∀ v ∈ H1
0 (Ω),(3.23a)

RnτRhv = RhR
n
τ v ∀ v ∈W 1,∞(In;H1

0 (Ω)),(3.23b)

Rnτ∆hvh = ∆hR
n
τ vh ∀ v ∈W 1,∞(In;Sh).(3.23c)

Moreover, there holds the following approximation property (cf. [8]):

‖v −Rhv‖H1 ≤ Chp‖v‖Hp+1 ∀ v ∈ H1
0 (Ω) ∩Hp+1(Ω).(3.24)
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1576 XIAOBING FENG, BUYANG LI, AND SHU MA

3.5. Consistency of scheme (2.8a)–(2.8b). We define a pair of intermediate
solutions (for comparison with the numerical solutions)

u∗h = RnτRhu and r∗h = Rnτ r,

and the following consistency error functions:

dnu := i∂tR
n
τ (Rhu− u) + ∆hRh(u−Rnτ u) + rg(u)u− Inτ [r∗hg(u∗h)u∗h],(3.25)

dnr :=
1

2
Re
[(
g(u)u, ∂tu

)
− Inτ

(
g(u∗h)u∗h, ∂tu

∗
h

)]
.(3.26)

It is easy to check that there hold∫
In

i
(
∂tu
∗
h, vh

)
dt+

∫
In

(
∇Pnτ u∗h,∇vh

)
dt(3.27)

− τ

2

k∑
j=1

wj
(
r∗h(tnj)g(u∗h(tnj))u

∗
h(tnj), vh(tnj)

)
=

∫
In

(Pnτ d
n
u, vh)dt,∫

In

∂tr
∗
hqhdt(3.28)

=
τ

4

k∑
j=1

wjRe
(
qh(tnj)g(u∗h(tnj))u

∗
h(tnj), ∂tu

∗
h(tnj)

)
+

∫
In

Pnτ d
n
r qhdt.

Theorem 3.5. Suppose that the solution of (1.1) is sufficiently smooth, then dnu ∈
C(In;H1

0 (Ω)) and there hold

sup
t∈In
‖dnu‖H1 ≤ C(hp + τk+1) and sup

t∈In
|Pnτ dnr | ≤ C(hp + τk+1).(3.29)

Proof. Since the spatial Ritz projection Rh maps H1
0 (Ω) into Sh ⊂ H1

0 (Ω), and
the temporal Ritz projection Rnτ maps W 1,∞(In;H1

0 (Ω)) into Pk ⊗H1
0 (Ω), it follows

that every term in (3.25) is in C(In;H1
0 (Ω)). This implies dnu ∈ C(In;H1

0 (Ω)).
By using the triangle inequality, from (3.25) we get

max
t∈In
‖dnu‖H1 ≤ max

t∈In

(
‖∂tRnτ (Rhu− u)‖H1 + ‖∆hRh(u−Rnτ u)‖H1

)
(3.30)

+ max
t∈In

(
‖rg(u)u− Inτ [rg(u)u]‖H1 + ‖rg(u)u− r∗hg(u∗h)u∗h‖H1

)
=: Du

1 +Du
2 +Du

3 +Du
4 .

Choosing m = 0 in Lemma 3.3, we obtain the following stability result:

‖Rnτ u‖W 1,∞(In;Hs) ≤ C‖u‖W 1,∞(In;Hs).(3.31)

Using (3.31) and (3.24), we can estimate Du
1 as follows:

Du
1 = max

t∈In
‖∂tRnτ (Rhu− u)‖H1 ≤ ‖Rhu− u‖W 1,∞(In;H1)

≤ Chp‖Rhu− u‖W 1,∞(In;Hp+1).
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Similarly, using identity (3.23) and Lemma 3.3, we have

Du
2 = max

t∈In
‖∆hRh(u−Rnτ u)‖H1 ≤ max

t∈In
‖u−Rnτ u‖H3

≤ Cτk+1‖u‖Wk+1,∞(In;H3),

and

Du
3 = max

t∈In
‖rg(u)u− Inτ [rg(u)u]‖H1 ≤ Cτk+1.

By using the triangle inequality, we decompose Du
4 into two parts,

Du
4 ≤ max

t∈In

(
‖rg(u)u− rg(Rhu)Rhu‖H1 + ‖rg(Rhu)Rhu−Rnτ rg(RnτRhu)RnτRhu‖H1

)
≤ Chp + Cτk+1.

Then, substituting the estimates of Du
j , j = 1, 2, 3, 4, into (3.30), we obtain the desired

estimate for ‖dnu‖H1 .
To estimate |Pnτ dnr |, we rewrite (3.26) as

dnr =
1

2
Re
[(
g(u)u, ∂t(u− u∗h)

)
+
(
g(u)u− g(u∗h)u∗h, ∂tu

∗
h

)]
+

1

2
Re
[(
g(u∗h)u∗h, ∂tu

∗
h

)
− Inτ

(
g(u∗h)u∗h, ∂tu

∗
h

)]
and test this expression by Pnτ v in the time interval In with v ∈ Pk. This yields

∫
In

Pnτ d
n
r v dt =

∫
In

dnrP
n
τ v dt

(3.32)

≤ 1

2
Re

∫
In

(
g(u)u, ∂t(u− u∗h)

)
Pnτ v dt

+ Cτ
1
2 ‖(g(u)u− g(u∗h)u∗h, ∂tu

∗
h)‖L∞(In)‖v‖L2(In)

+ Cτk+ 3
2 ‖∂k+1

t

(
g(u∗h)u∗h, ∂tu

∗
h

)
‖L∞(In)‖v‖L2(In)

≤ 1

2
Re

∫
In

(
g(u)u, ∂t(u− u∗h)

)
Pnτ v dt+ Cτ

1
2 (hp + τk+1)‖v‖L2(In).

The first term on the right-hand side of (3.32) can be estimated as follows:

1

2
Re

∫
In

(
g(u)u, ∂t(u− u∗h)

)
Pnτ v dt =

∫
In

(g(u)u, ∂t(u−Rnτ u))Pnτ v dt(3.33)

+

∫
In

(g(u)u, ∂tR
n
τ (u−Rhu))Pnτ v dt

= : Dr
1 +Dr

2,

Dr
1 =

∫
In

(
g(u)uPnτ v, ∂t(u−Rnτ u)

)
dt

=

∫
In

(
g(u)uPnτ v − Pnτ (g(u)uPnτ v), ∂t(u−Rnτ u)

)
dt

≤ Cτ 1
2 ‖g(u)uPnτ v − Pnτ (g(u)uPnτ v)‖L2(In;L2)‖∂t(u−Rnτ u)‖L∞(In;L2)
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1578 XIAOBING FENG, BUYANG LI, AND SHU MA

≤ Cτ 3
2 ‖Pnτ v‖L2(In;L2)‖∂t(u−Rnτ u)‖L∞(In;L2) (we have used Lemma 3.4)

≤ Cτk+ 3
2 ‖v‖L2(In)‖∂k+1

t u‖L∞(In;L2) (we have used Lemma 3.3),

Dr
2 ≤ Cτ

1
2 ‖g(u)u‖L∞(In;L2)‖u−Rhu‖W 1,∞(In;L2)‖v‖L2(In)

≤ Cτ 1
2hp‖v‖L2(In)‖u‖W 1,∞(In;Hp+1).

Substituting these estimates into (3.32), we obtain∣∣∣∣ ∫
In

Pnτ d
n
r v dt

∣∣∣∣ ≤ Cτ 1
2 (hp + τk+1)‖v‖L2(In).

Since this inequality holds for arbitrary v ∈ L2(In), it follows that

‖Pnτ dnr ‖L2(In) ≤ Cτ
1
2 (hp + τk+1).

Then, using the inverse inequality in time, we obtain the desired estimate for
|Pnτ dnr |.

4. Well-posedness and convergence analysis. We define the error functions
euh = uh − u∗h and erh = rh − r∗h, with the following abbreviations:

eunj = euh(tnj), ernj = erh(tnj), unj = uh(tnj), rnj = rh(tnj),

u∗nj = u∗h(tnj), r∗nj = r∗h(tnj), vnj = vh(tnj), qnj = qh(tnj).

Subtracting (3.27)–(3.28) from (3.7)–(3.8), we obtain the following error equations:

i

∫
In

(
∂te

u
h, vh

)
dt = −

∫
In

(
∇Pnτ euh,∇vh

)
dt+

τ

2

k∑
j=1

wj

(
ernjg(unj)unj , vnj

)

+
τ

2

k∑
j=1

wj

(
r∗nj
[
g(unj)unj − g(u∗nj)u

∗
nj

]
, vnj

)
−
∫
In

(Pnτ d
n
u, vh)dt,(4.1a)

∫
In

∂te
r
hqhdt =

τ

4

k∑
j=1

wjRe
(
qnj
(
g(unj)unj − g(u∗nj)u

∗
nj

)
, ∂tu

∗
h(tnj)

)
+
τ

4

k∑
j=1

wjRe
(
qnjg(unj)unj , ∂te

u
h(tnj)

)
−
∫
In

Pnτ d
n
r qhdt,(4.1b)

which hold for all test functions vh ∈ Pk ⊗ Sh and qh ∈ Pk.

Remark 4.1. If (4.1) has a solution (euh, e
r
h) ∈ Xτ,h×Yτ,h, then uh = u∗h + euh and

rh = r∗h + erh give a solution of the numerical scheme (2.8). In the following, we prove
existence of (euh, e

r
h) to (4.1) by using Schaefer’s fixed point theorem, which is quoted

below.

Theorem 4.1 (Schaefer’s fixed point theorem [11, Chapter 9.2, Theorem 4]).
Let B be a Banach space and M : B → B be a continuous and compact mapping. If
the set

(4.2)
{
φ ∈ B : ∃ θ ∈ [0, 1] such that φ = θM(φ)

}
is bounded in B, then the mapping M has at least one fixed point.
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We define

X∗τ,h =
{
vh ∈ Xτ,h : max

1≤n≤N
max

1≤j≤k
‖vh(tnj)− u∗h(tnj)‖L∞∩H1 ≤ 1

2

}
,(4.3)

Y ∗τ,h =
{
qh ∈ Yτ,h : max

1≤n≤N
max

1≤j≤k
|qh(tnj)− r∗h(tnj)| ≤

1

2

}
,(4.4)

where the norm ‖ · ‖L∞∩H1 is defined as

‖φh‖L∞∩H1 := max
(
‖φh‖L∞ , ‖φh‖H1

)
.

For any element (φh, ϕh) ∈ Xτ,h × Yτ,h, we define two associated numbers

ρ[φh] := min

 1

max
1≤n≤N

max
1≤j≤k

‖φh(tnj)‖L∞∩H1

, 1

 ,(4.5a)

ρ[ϕh] := min

 1

max
1≤n≤N

max
1≤j≤k

|ϕh(tnj)|
, 1

 ,(4.5b)

which are continuous with respect to (φh, ϕh) (because all norms are equivalent in the
finite-dimensional space Xτ,h × Yτ,h). Furthermore, the two numbers defined above
satisfy the following estimates:

max
1≤n≤N

max
1≤j≤k

‖ρ[φh]φh(tnj)‖L∞∩H1 ≤ 1,(4.6)

max
1≤n≤N

max
1≤j≤k

|ρ[ϕh]ϕh(tnj)| ≤ 1.(4.7)

Then we define

uφ := u∗h + ρ[φh]φh and rϕ := r∗h + ρ[ϕh]ϕh(4.8)

with the following abbreviations:

uφnj = uφh(tnj) and ϕnj = ϕh(tnj),

and define (euh, e
r
h) ∈ Xτ,h × Yτ,h to be the solution of the following linear equations:

i

∫
In

(
∂te

u
h, vh

)
dt+

∫
In

(
∇Pnτ euh,∇vh

)
dt(4.9)

=
τ

2

k∑
j=1

wj

(
ϕnjg(uφnj)u

φ
nj , vnj

)

+
τ

2

k∑
j=1

wj

(
r∗nj
[
g(uφnj)u

φ
nj − g(u∗nj)u

∗
nj

]
, vnj

)
−
∫
In

(Pnτ d
u, vh)dt

and ∫
In

∂te
r
hqh dt =

τ

4

k∑
j=1

wjRe
(
qnj
(
g(uφnj)u

φ
nj − g(u∗nj)u

∗
nj

)
, ∂tu

∗
h(tnj)

)
(4.10)

+
τ

4

k∑
j=1

wjRe
(
qnjg(uφnj)u

φ
nj , ∂tφh(tnj)

)
−
∫
In

Pnτ d
rqhdt
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1580 XIAOBING FENG, BUYANG LI, AND SHU MA

for all vh ∈ Pk ⊗ Sh and qh ∈ Pk, n = 1, . . . , N . We denote by M : Xτ,h × Yτ,h →
Xτ,h × Yτ,h the mapping from (φh, ϕh) to (euh, e

r
h), and define the set

(4.11) B =
{

(φh, ϕh) ∈ Xτ,h×Yτ,h : ∃ θ ∈ [0, 1] such that (φh, ϕh) = θM(φh, ϕh)
}
,

and the following norm on Xτ,h × Yτ,h: For any (φh, ϕh) ∈ Xτ,h × Yτ,h

(4.12) ‖(φh, ϕh)‖Xτ,h×Yτ,h := ‖φh‖L∞(0,T ;H1) + ‖ϕh‖L∞(0,T ).

It is straightforward to show the following result (see [12, proof of Lemma 4.2]).

Lemma 4.2. The mapping M : Xτ,h × Yτ,h → Xτ,h × Yτ,h is well-defined, contin-
uous, and compact.

Moreover, there holds the following key technical lemma.

Lemma 4.3. Let 1 ≤ d ≤ 3 and assume that the solution of the NLS equation
(1.1) is sufficiently smooth. Then there exist positive constants τ0 and h0 such that
when τ ≤ τ0 and h ≤ h0, the following statement holds: If (φh, ϕh) ∈ B and (euh, e

r
h) =

M(φh, ϕh), then

‖euh‖L∞(0,T ;H1) + ‖erh‖L∞(0,T ) ≤ C
(
‖euh(0)‖H1 + |erh(0)|

)
(4.13)

+ C max
1≤n≤N

max
t∈In

(
‖dnu‖H1 + |Pnτ dnr |

)
,

max
1≤n≤N

max
1≤j≤k

‖euh(tnj)‖L∞∩H1 ≤ 1

2
and max

1≤n≤N
max

1≤j≤k
|erh(tnj)| ≤

1

2
,(4.14)

ρ[φh] = 1, ρ[ϕh] = 1.(4.15)

Proof. Since the proof is very long and technical, below we only outline the main
steps and ingredients of the proof and refer the interested reader to [12] for the details.

If (φh, ϕh) ∈ B and (euh, e
r
h) = M(φh, ϕh), then

(φh, ϕh) = θM(φh, ϕh) = (θeuh, θe
r
h),

which implies φh = θeuh and ϕh = θerh. In this case, (4.9)–(4.10) can be rewritten as

i

∫
In

(
∂te

u
h, vh

)
dt = −

∫
In

(
∇Pnτ euh,∇vh

)
dt+

θτ

2

k∑
j=1

wj

(
ernjg(uφnj)u

φ
nj , vnj

)(4.16)

+
τ

2

k∑
j=1

wj

(
r∗nj
[
g(uφnj)u

φ
nj − g(u∗nj)u

∗
nj

]
, vnj

)
−
∫
In

(Pnτ d
n
u, vh)dt,

∫
In

∂te
r
hqhdt =

τ

4

k∑
j=1

wjRe
(
qnj
(
g(uφnj)u

φ
nj − g(u∗nj)u

∗
nj

)
, ∂tu

∗
h(tnj)

)
(4.17)

+
θτ

4

k∑
j=1

wjRe
(
qnjg(uφnj)u

φ
nj , ∂te

u
h(tnj)

)
−
∫
In

Pnτ d
n
r qhdt,

which hold for all vh ∈ Pk ⊗ Sh and qh ∈ Pk, n = 1, . . . , N . It remains to derive
estimates for euh and erh based on the above equations.
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From (4.6)–(4.7) and definition (4.8) we get

max
1≤n≤N

max
1≤j≤k

‖uφ(tnj)‖L∞∩H1 + max
1≤n≤N

max
1≤j≤k

|rϕ(tnj)|(4.18)

≤ max
1≤n≤N

max
1≤j≤k

‖u∗h(tnj)‖L∞∩H1 + max
1≤n≤N

max
1≤j≤k

|r∗h(tnj)|

+ max
1≤n≤N

max
1≤j≤k

‖ρ[φh]φh(tnj)‖L∞∩H1 + max
1≤n≤N

max
1≤j≤k

|ρ[ϕh]ϕh(tnj)|

≤ ‖u∗h‖L∞(0,T ;L∞∩H1) + ‖r∗h‖L∞(0,T ) + 2.

Thus ‖uφ(tnj)‖L∞∩H1 and |rϕ(tnj)| are bounded uniformly with respect to τ and h.
The major part of the remaining proof is devoted to proving the following three

inequalities:

∫
In

‖euh‖2H1dt ≤ Cτ‖euh(tn−1)‖2H1 + Cτ2

∫
In

|erh|2dt+ Cτ3 max
t∈In
‖dnu‖2H1 ,

(4.19)

∫
In

|erh|2dt ≤ Cτ
[
‖euh(tn−1)‖2H1 + |erh(tn−1)|2 + τ2 max

t∈In

(
‖dnu‖2H1 + |Pnτ dnr |2

)]
,(4.20)

‖∇euh(tn)‖2 + |erh(tn)|2 − ‖∇euh(tn−1)‖2 − |erh(tn−1)|2 +

∫
In

‖∂teuh‖2H−1dt

(4.21)

≤ C
∫
In

(
‖euh‖2H1 + |erh|2

)
dt+ C

∫
In

(‖dnu‖2H1 + |Pnτ dnr |2)dt.

In particular, (4.19) can be obtained by substituting vh = (−∆h)Pnτ [Pnτ e
u
h(t)(tn − t)]

into (4.16) and considering the imaginary part; (4.20) can be obtained by substituting
qh = Pnτ

[
Pnτ e

r
h(t)(tn − t)

]
into (4.17); (4.21) is obtained by setting vh = ∂te

u
h into

(4.16) and considering the real part, setting qh = 2erh into (4.17), and estimating∫
In
‖∂teuh‖2H−1dt via a duality argument using (4.16). More details can be found in

[12, proof of Lemma 4.3].
To complete the proof, substituting (4.19)–(4.20) into (4.21), we obtain(
‖∇euh(tn)‖2 + |erh(tn)|2

)
−
(
‖∇euh(tn−1)‖2 + |erh(tn−1)|2

)
+

∫
In

‖∂teuh‖2H−1dt(4.22)

≤ Cτ
(
‖∇euh(tn−1)‖2 + |erh(tn−1)|2

)
+ C

∫
In

(‖dnu‖2H1 + |Pnτ dnr |2)dt.

It follows from Gronwall’s inequality that

max
1≤n≤N

(
‖∇euh(tn)‖2 + |erh(tn)|2

)
+ C

∫ T

0

‖∂teuh‖2H−1 dt(4.23)

≤ C(‖∇euh(0)‖2 + |erh(0)|2) + C

N∑
n=1

∫
In

(‖dnu‖2H1 + |Pnτ dnr |2)dt.

Then, substituting the above inequality into (4.19)–(4.20) and using the temporal
inverse inequality, we obtain

max
t∈[0,T ]

(
‖euh(t)‖2H1 + |erh(t)|2

)
≤ C(‖euh(0)‖2H1 + |erh(0)|2)(4.24)

+ C max
1≤n≤N

max
t∈In

(
‖dnu‖2H1 + |Pnτ dnr |2

)
.

Hence, (4.13) holds.
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1582 XIAOBING FENG, BUYANG LI, AND SHU MA

When τ and h are sufficiently small, inequality (4.24) implies that

max
t∈[0,T ]

‖euh(t)‖H1 ≤ 1

2
and max

t∈[0,T ]
|erh(t)| ≤ 1

2
.(4.25)

On the one hand, by the inverse inequality, we have

max
t∈[0,T ]

‖euh(t)‖L∞ ≤ C`h max
t∈[0,T ]

‖euh(t)‖H1

(4.26)

≤ C`h
[
‖euh(0)‖H1 + |erh(0)|+ max

1≤n≤N
max
t∈In

(
‖dnu‖H1 + |Pnτ dnr |

)]
,

where

`h =


1 if d = 1,

ln(2 + 1/h) if d = 2,

h−
1
2 if d = 3.

On the other hand, by choosing a test function v in (4.16) satisfying the properties
v(tnj) = 1 and v(tni) = 0 for i 6= j, and using property (3.6), we obtain

‖∆he
u
nj‖ =

∥∥∥i∂te
u
nj − θPh

[
ernjg(uφnj)u

φ
nj

]
+ Phd

u
nj(4.27)

− Ph
[
r∗nj(g(uφnj)u

φ
nj − g(u∗nj)u

∗
nj)
]∥∥∥

≤ Cτ−1
[
‖euh(0)‖H1 + |erh(0)|+ max

1≤n≤N
max
t∈In

(
‖dnu‖H1 + |Pnτ dnr |

)]
,

where we have used (4.23)–(4.24) and an inverse inequality in time in estimating ∂te
u
nj .

By the discrete Sobolev embedding inequality, for 1 ≤ d ≤ 3 we have

‖eunj‖L∞ ≤ C‖eunj‖
1
2

H1‖∆he
u
nj‖

1
2(4.28)

≤ Cτ− 1
2

[
‖euh(0)‖H1 + |erh(0)|+ max

1≤n≤N
max
t∈In

(
‖dnu‖H1 + |Pnτ dnr |

)]
,

where we have used (4.24) and (4.27) in the last inequality. Then, combining (4.26)
and (4.28) yields

max
1≤n≤N

max
1≤j≤k

‖eu(tnj)‖L∞ ≤ C min(`h, τ
− 1

2 )
[
‖euh(0)‖H1 + |erh(0)|

+ max
1≤n≤N

max
t∈In

(
‖dnu‖H1 + |Pnτ dnr |

)]
≤ C

(
hp−

1
2 + τk+ 1

2

)
,

where we have used the consistency estimate from Theorem 3.5. When τ and h are
sufficiently small, the inequality above implies

max
1≤n≤N

max
1≤j≤k

‖eu(tnj)‖L∞ ≤
1

2
.(4.29)

This together with (4.25) gives (4.14).
Furthermore, since φh = θeuh and ϕh = θerh, it follows that

max
1≤n≤N

max
1≤j≤k

‖φh(tnj)‖L∞∩H1 ≤ 1

2
and max

1≤n≤N
max

1≤j≤k
|ϕh(tnj)| ≤

1

2
,

which imply ρ[φh] = ρ[ϕh] = 1 in view of definitions in (4.5). This proves (4.15).
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We now are ready to state and prove the existence, uniqueness, and convergence
of numerical solutions, which comprise the second main theorem of this paper.

Theorem 4.4. Let 1 ≤ d ≤ 3 and assume that the solution of the NLS equation
(1.1) is sufficiently smooth. Then there exist positive constants τ0 and h0 such that
when τ ≤ τ0 and h ≤ h0, the numerical method (2.8) has a unique solution (uh, rh) ∈
X∗τ,h × Y ∗τ,h. Moreover, this solution satisfies the following error estimate:

(4.30) max
t∈[0,T ]

(
‖uh(t)− u∗h(t)‖H1 + |rh(t)− r∗h(t)|

)
≤ C(hp + τk+1).

Proof. Step 1: Existence. By the definition of B, if (φh, ϕh) ∈ B and (euh, e
r
h) =

M(φh, ϕh), then φh = θeuh and ϕh = θerh. Thus (4.13) implies

‖(φh, ϕh)‖Xτ,h×Yτ,h = ‖φh‖L∞(0,T ;H1) + ‖ϕh‖L∞(0,T ) ≤ C,(4.31)

which together with Schaefer’s fixed point theorem imply the existence of a fixed point
(φh, ϕh) for the mapping M (corresponding to θ = 1) with

(euh, e
r
h) = (φh, ϕh), uφ = u∗h + φh, and rφ = r∗h + ϕh,

satisfying (4.9)–(4.10), where we have used (4.15) in the expression (4.8). Conse-

quently, (euh, e
r
h) is a solution of (4.1) with (uh, rh) = (uφh, r

ϕ
h ) = (u∗h + euh, r

∗
h + erh).

Hence, in view of the discussions in Remark 4.1, (uh, rh) is a solution of the numerical
scheme (2.8), and (4.14) implies (uh, rh) is in the set X∗τ,h×Y ∗τ,h defined in (4.3)–(4.4).
This proves the existence of a numerical solution in X∗τ,h × Y ∗τ,h.

Step 2: Uniqueness. Suppose that (uh, rh) and (ũh, r̃h) in X∗τ,h × Y ∗τ,h are two
pairs of numerical solutions, and set euh = uh − ũh and erh = rh − r̃h (abusing the
notation). Subtracting the corresponding equations satisfied by (uh, rh) and (ũh, r̃h)
shows that (euh, e

r
h) satisfies (4.1) with euh(0) = erh(0) = 0 and dnu = dnr = 0. In the

meantime, the definition in (4.3)–(4.4) implies

‖euh(tnj)‖L∞∩H1 ≤ 1 and |erh(tnj)| ≤ 1.(4.32)

Accordingly, (euh, e
r
h) is a fixed point of the mapping M (corresponding to θ = 1 in

B) in the case euh(0) = erh(0) = 0 and dnu = dnr = 0. Hence, an application of (4.13)
yields

‖euh‖L∞(0,T ;H1) + ‖erh‖L∞(0,T ) ≤ C
[
‖euh(0)‖H1 + |erh(0)|

+ max
1≤n≤N

max
t∈In

(
‖dnu‖H1 + |Pnτ dnr |

)]
= 0.

Thus, (uh, rh) = (ũh, r̃h) and the uniqueness of the numerical solution is proved.
Step 3: Error estimate. Since the error functions euh = uh − u∗h and erh = rh − r∗h

satisfy (4.1) and (4.32), it follows that (euh, e
r
h) is a fixed point of the mapping M

(corresponding to θ = 1 in B). Hence, an application of (4.13) yields

‖euh‖L∞(0,T ;H1) + ‖erh‖L∞(0,T )

≤ C
[
‖euh(0)‖H1 + |erh(0)|+ max

1≤n≤N
max
t∈In

(
‖dnu‖H1 + |Pnτ dnr |

)]
.

Substituting the consistency error estimates from Theorem 3.5 into the above inequal-
ity yields the desired estimate (4.30). The proof is complete.

Remark 4.2. For the periodic and Neumann boundary conditions, the mass and
energy conservations in Theorem 3.1 and the error estimate in Theorem 4.4 can be
proved similarly.

D
ow

nl
oa

de
d 

07
/1

8/
22

 to
 1

58
.1

32
.1

61
.1

81
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1584 XIAOBING FENG, BUYANG LI, AND SHU MA

Table 1
Time discretization errors of the proposed method, with h = 2L

5000
and T = 1.

k τ p = 3

‖u(x, t)− uh(x, t)‖L∞(0,T ;H1) Order

2

1/60 3.7964E–05 –
1/70 2.3429E–05 3.1312
1/80 1.5460E–05 3.1132
1/90 1.0733E–05 3.0985

1/100 7.7542E–06 3.0853

3

1/20 3.4019E–05 –
1/25 1.3821E–05 4.0364
1/30 6.6322E–06 4.0275
1/35 3.5689E–06 4.0200
1/40 2.0886E–06 4.0123

4

1/8 1.2291E–04 –
1/12 1.5120E–05 5.1681
1/14 6.8492E–06 5.1369
1/16 3.4634E–06 5.1067
1/20 1.1555E–06 4.9192

5. Numerical experiments. In this section, we present some one-dimensional
numerical tests to validate the theoretical results proved in Theorems 3.1 and 4.4
about the mass and energy conservations, and the convergence rates of the proposed
method. All the computations are performed using the software package FEniCS
(https://fenicsproject.org).

We consider the cubic NLS equation

i∂tu− ∂xxu− 2|u|2u = 0 in (−L,L)× (0, T ],

u|t=0 = u0 in (−L,L) with L = 20,
(5.1)

subject to the periodic boundary condition. We choose u0 = sech(x) exp(2ix) so that
the exact solution is given by

u(x, t) = sech(x+ 4t) exp(i(2x+ 3t)).(5.2)

This example contains a soliton wave and is often used as a benchmark for meansuring
the effectiveness of numerical methods for the NLS equation; see [33, 37, 25].

5.1. Convergence rates. We solve problem (5.1) by the proposed method (2.8)
and compare the numerical solutions with the exact solution (5.2). Newton’s method
is used to solve the nonlinear system. The iteration is set to stop when the error is
below 10−10.

The time discretization errors are presented in Table 1, where we have used finite
elements of degree 3 with a sufficiently spatial mesh h = 2L/5000 so that the error
from spatial discretization is negligibly small in observing the temporal convergence
rates. From Table 1 we see that the error of time discretization is O(τk+1), which is
consistent with the result proved in Theorem 4.4.

The spatial discretization errors are presented in Table 2, where we have chosen
k = 3 with a sufficiently small time stepsize τ = 1/1000 so that the time discretization
error is negligibly small compared to the spatial error. From Table 2 we see that the
spatial discretization errors are O(hp) in the H1 norm. This is also consistent with
the result proved in Theorem 4.4.
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Table 2
Spatial discretization errors of the proposed method with τ = 1

1000
and T = 1.

p M k = 3

‖u(x, t)− uh(x, t)‖L∞(0,T ;H1) Order

1

1400 5.8670E–02 –
1600 5.1134E–02 1.0295
1800 4.5330E–02 1.0229
2000 4.0719E–02 1.0183
2200 3.6964E–02 1.0149

2

240 1.9306E–02 –
260 1.6438E–02 2.0094
280 1.4167E–02 2.0062
300 1.2338E–02 2.0041
320 1.0842E–02 2.0027

3

90 1.6147E–02 –
100 1.1661E–02 3.0894
110 8.7112E–03 3.0599
120 6.6844E–03 3.0436
130 5.2435E–03 3.0334

Fig. 1. Evolution of mass Mh(t) − Mh(0) and SAV energy Eh(t) − Eh(0) with p = 3 and
τ = h = 0.2.

5.2. Mass and energy conservations. We denote the mass and SAV energy
of a numerical solution by

Mh(t) =

∫
Ω

|uh(t)|2dx and Eh(t) =
1

2

∫
Ω

|∇uh(t)|2dx− rh(t)2,(5.3)

respectively. The evolution of mass and SAV energy of the numerical solutions is
presented in Figure 1 with τ = 0.2 and h = 0.2. It is shown that

mass = 2 +O(10−12) and SAV energy = −7.33358048516 +O(10−12),

which are much smaller than the error of the numerical solutions, as shown in Figure 2.
This shows the effectiveness of the proposed method in preserving mass and energy
(independent of the error of numerical solutions). The number of iterations at each
time level is presented in Figure 3 to show the effectiveness of Newton’s method.

5.3. Comparison of different methods in preserving the shape of a soli-
ton. The graph of |u(x, t)| is a soliton propagating towards the left. Its shape remains
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Fig. 2. Evolution of the error of the numerical solution with p = 3 and τ = h = 0.2.

-
Fig. 3. Number of iterations at each time level with p = 3 and τ = h = 0.2.

unchanged for all t ≥ 0. The graphs of numerical solutions given by several different
numerical methods using the same mesh sizes are presented in Figures 4 and 5. All
the methods preserve mass and energy conservations. The numerical results show the
effectiveness of the proposed method in preserving the shape of the soliton.

5.4. Capability of solving focusing nonlinearity. We consider the cubic
NLS equation

i∂tu− ∂xxu− ∂yyu+ 2|u|2u = 0 in Ω × (0, T ],

u|t=0 = u0 in Ω
(5.4)

in two-dimensional space Ω = [0, 1]×[0, 1] subject to the periodic boundary condition.
We choose u0 = exp(2πi(x+ y)) so that the exact solution is given by

u(x, t) = exp(i(2πx+ 2πy + (2 + 8π2)t)),(5.5)

which admits a progressive plane wave solution; see [37].
We solve problem (5.4) by the proposed method (2.8) and compare the numerical

solutions with the exact solution (5.5). Newton’s method is used to solve the nonlinear
system. The iteration is stopped when the error is below 10−10.

The time discretization errors are presented in Table 3, where we have used finite
elements of degree 3 with a sufficiently spatial mesh h = 1/80 so that the error from
spatial discretization is negligibly small in observing the temporal convergence rates.
From Table 3 we see that the error of the time discretization is O(τk+1), which is
consistent with the result proved in Theorem 4.4.

The spatial discretization errors are presented in Table 4, where we have chosen
k = 3 with a sufficiently small time stepsize τ = 1/1000 so that the time discretization
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(a) (b)

(c) (d)

Fig. 4. Soliton propagation when t ∈ [0, 2]: Numerical solutions with p = 1, M = 1200, and
∆t = 0.1.

(a) (b)

(c) (d)

-
Fig. 5. Soliton propagation when t ∈ [0, 2]: Numerical solutions with p = 1, M = 1200, and

∆t = 0.05.
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Table 3
Time discretization errors of the proposed method with h = 1

80
and T = 0.1.

k τ p = 3

‖u(x, t)− uh(x, t)‖L∞(0,T ;H1) Order

2

1/460 5.0023E–04 –
1/480 4.3780E–04 3.1321
1/500 3.8572E–04 3.1027
1/520 3.4198E–04 3.0686
1/540 3.0504E–04 3.0290

3

1/60 1.6206E–02 –
1/80 4.9792E–03 4.1022

1/100 2.0173E–03 4.0490
1/120 9.6960E–04 4.0183
1/140 5.2530E–04 3.9761

4

1/30 3.6941E–02 –
1/40 8.0993E–03 5.2750
1/50 2.5534E–03 5.1731
1/60 1.0078E–03 5.0989
1/70 4.6554E–04 5.0104

Table 4
Spatial discretization errors of the proposed method with τ = 1

1000
and T = 0.1.

p h k = 3

‖u(x, t)− uh(x, t)‖L∞(0,T ;H1) Order

1

1/70 5.6297E–01 –
1/80 4.8304E–01 1.1466
1/90 4.2346E–01 1.1178

1/100 3.7726E–01 1.0964
1/110 3.4035E–01 1.0803

2

1/10 4.9467E–01 –
1/15 2.0992E–01 2.1141
1/20 1.1748E–01 2.0178
1/25 7.5177E–02 2.0005
1/30 5.2233E–02 1.9972

3

1/12 2.1955E–02 –
1/14 1.3738E–02 3.0412
1/16 9.1747E–03 3.0236
1/18 6.4327E–03 3.0144
1/20 4.6849E–03 3.0092

error is negligibly small compared to the spatial error. From Table 4 we see that the
spatial discretization errors are O(hp) in the H1 norm. This is also consistent with
the result proved in Theorem 4.4.

The evolution of mass and SAV energy of the numerical solutions are presented
in Figure 6 with τ = 0.01 and h = 0.1. It is shown that

mass = 1.000397142598+O(10−12) and SAV energy = 80.45628698537+O(10−11),

which are much smaller than the error of the numerical solutions, as shown in Figure 7.
This shows the effectiveness of the proposed method in preserving mass and energy
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Fig. 6. Evolution of mass Mh(t)−Mh(0) and SAV energy Eh(t)−Eh(0) with p = 3, τ = 0.01,
and h = 0.1.

Fig. 7. Evolution of error of the numerical solution, with p = 3, τ = 0.01, and h = 0.1.

Fig. 8. Number of iterations at each time level with p = 3, τ = 0.01, and h = 0.1.

(independent of the error of numerical solutions). The number of iterations at each
time level is presented in Figure 8 to show the effectiveness of Newton’s method.
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