Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/93297
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLi, Jen_US
dc.creatorLi, Xen_US
dc.creatorJu, Len_US
dc.creatorFeng, Xen_US
dc.date.accessioned2022-06-15T03:42:40Z-
dc.date.available2022-06-15T03:42:40Z-
dc.identifier.issn1064-8275en_US
dc.identifier.urihttp://hdl.handle.net/10397/93297-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2021 Society for Industrial and Applied Mathematicsen_US
dc.rightsThe following publication Li, J., Li, X., Ju, L., & Feng, X. (2021). Stabilized integrating factor Runge--Kutta method and unconditional preservation of maximum bound principle. SIAM Journal on Scientific Computing, 43(3), A1780-A1802 is available at https://doi.org/10.1137/20M1340678en_US
dc.subjectHigh-order methoden_US
dc.subjectIntegrating factor Runge-Kutta methoden_US
dc.subjectMaximum bound principleen_US
dc.subjectSemilinear parabolic equationsen_US
dc.subjectStabilizationen_US
dc.titleStabilized integrating factor Runge--Kutta method and unconditional preservation of maximum bound principleen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spageA1780en_US
dc.identifier.epageA1802en_US
dc.identifier.volume43en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1137/20M1340678en_US
dcterms.abstractThe maximum bound principle (MBP) is an important property for a large class of semilinear parabolic equations, in the sense that the time-dependent solution of the equation with appropriate initial and boundary conditions and nonlinear operator preserves for all time a uniform pointwise bound in absolute value. It has been a challenging problem to design unconditionally MBP-preserving high-order accurate time-stepping schemes for these equations. In this paper, we combine the integrating factor Runge-Kutta (IFRK) method with the linear stabilization technique to develop a stabilized IFRK (sIFRK) method, and we successfully derive sufficient conditions for the proposed method to preserve the MBP unconditionally in the discrete setting. We then elaborate some sIFRK schemes with up to the third-order accuracy, which are proven to be unconditionally MBP-preserving by verifying these conditions. In addition, it is shown that many classic strong stability-preserving sIFRK schemes do not satisfy these conditions except the first-order one. Extensive numerical experiments are also carried out to demonstrate the performance of the proposed method.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on scientific computing, 2021, v. 43, no. 3, p. A1780-A1802en_US
dcterms.isPartOfSIAM journal on scientific computingen_US
dcterms.issued2021-
dc.identifier.scopus2-s2.0-85105734496-
dc.identifier.eissn1095-7197en_US
dc.description.validate202206 bcfcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberAMA-0051-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNSFCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS53812676-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
20m1340678.pdf1.23 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

56
Last Week
0
Last month
Citations as of May 19, 2024

Downloads

59
Citations as of May 19, 2024

SCOPUSTM   
Citations

40
Citations as of May 16, 2024

WEB OF SCIENCETM
Citations

39
Citations as of May 16, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.