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STABILIZED INTEGRATING FACTOR RUNGE--KUTTA METHOD
AND UNCONDITIONAL PRESERVATION OF MAXIMUM BOUND

PRINCIPLE\ast 

JINGWEI LI\dagger , XIAO LI\ddagger , LILI JU\S , AND XINLONG FENG\P 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . The maximum bound principle (MBP) is an important property for a large class of
semilinear parabolic equations, in the sense that the time-dependent solution of the equation with
appropriate initial and boundary conditions and nonlinear operator preserves for all time a uniform
pointwise bound in absolute value. It has been a challenging problem to design unconditionally MBP-
preserving high-order accurate time-stepping schemes for these equations. In this paper, we combine
the integrating factor Runge--Kutta (IFRK) method with the linear stabilization technique to develop
a stabilized IFRK (sIFRK) method, and we successfully derive sufficient conditions for the proposed
method to preserve the MBP unconditionally in the discrete setting. We then elaborate some sIFRK
schemes with up to the third-order accuracy, which are proven to be unconditionally MBP-preserving
by verifying these conditions. In addition, it is shown that many classic strong stability-preserving
sIFRK schemes do not satisfy these conditions except the first-order one. Extensive numerical
experiments are also carried out to demonstrate the performance of the proposed method.
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Runge--Kutta method, stabilization, high-order method
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1. Introduction. Let us consider a class of semilinear parabolic equations of
the form

ut = \scrL u+ f [u], t > 0, \bfitx \in \Omega ,(1.1)

where u = u(t,\bfitx ) is the time-dependent quantity of interest defined on an open,
connected, and bounded region \Omega \subset \BbbR d with Lipschitz boundary \partial \Omega , \scrL is a linear,
local (classic) or nonlocal, elliptic operator, and f represents a nonlinear operator. For
some specific \scrL and f , the solution to (1.1) under appropriate initial and boundary
conditions satisfies some important properties, such as existence of invariant sets
and energy dissipation. The existence of invariant sets also means that the solution
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sIFRK METHOD AND UNCONDITIONAL PRESERVATION OF MBP A1781

satisfies the maximum bound principle (MBP) [10] in the sense that if the initial
data and/or the boundary value are pointwise bounded by some specific constant in
absolute value, then the absolute value of the solution is also bounded by the same
constant everywhere for all time. A well-known case is the classic Allen--Cahn equation
[1, 14] with \scrL given by the Laplace operator and f [u] = u  - u3 in (1.1), where the
constant bounding the solution is 1. In addition to the MBP, the Allen--Cahn equation
also satisfies the energy dissipation, namely, the solution decreases some free energy
in time. The energy dissipation is a common property shared by phase-field models,
which are typical cases of the semilinear parabolic equations (1.1) derived as the
gradient flows with respect to some specific free energy functional. When designing
numerical schemes for phase-field models, the MBP and the energy dissipation are
desired to be preserved in the discrete setting for the equations possessing these two
properties.

The MBP becomes an indispensable tool to study physical features of semilinear
parabolic equations, including the aspects of mathematical analysis and numerical
simulation. During the past several decades, there have been many studies devoted
to MBP-preserving numerical methods for equations like (1.1). For the spatial dis-
cretizations, a partial list includes the works for finite element method [3, 6, 43, 44, 46],
finite difference method [4, 5, 42], and finite volume method [33, 34]. For the tempo-
ral discretizations, the stabilized linear semi-implicit methods were shown to preserve
the MBP unconditionally for the first-order schemes [37, 41] but only conditionally
for the second-order methods [21]. Some nonlinear second-order schemes were also
presented to preserve conditionally the MBP for the Allen--Cahn-type equations in
[22, 23]. The exponential time differencing (ETD) method [2, 7, 20] was applied to the
nonlocal Allen--Cahn equation together with a linear stabilization technique, and the
corresponding first- and second-order ETD schemes were proved to be unconditionally
MBP-preserving in [9]. Later, an abstract framework on the MBP-preserving ETD
schemes with linear stabilization was established in [10] for a wide range of semilinear
parabolic equations. The ETD method comes from the variation-of-constants formula
with the nonlinear terms approximated by polynomial interpolations, followed by ex-
act evaluation of the resulting integrals involving matrix exponentials. The stabilized
ETD method is efficient and accurate for semilinear parabolic equations with stiff lin-
ear and nonlinear terms and thus has been successfully applied to various phase-field
models recently (see, e.g., [27, 28, 29, 47]). However, as shown in [10], the existing
MBP-preserving ETD schemes are only up to second order in time, while higher-order
ETD schemes with stabilization fail to preserve the MBP. Therefore, it is highly de-
sirable to find an alternative choice to develop higher-order time-stepping schemes
which preserve the MBP unconditionally.

The integrating factor method is another widely used temporal integration method
based on the exponential integrators and proposed to solve the ordinary differential
equations with large Lipschitz constants [30, 35]. Different from the ETD method, the
integrating factor method is derived by directly applying numerical quadratures to
the integrals in the variation-of-constants formula and has also been successfully used
for many scientific applications [20, 31, 32]. In [25], the strong stability-preserving
(SSP) integrating factor Runge--Kutta (IFRK) method is proposed for solving (1.1),
where the concept of SSP [18] means that

\| un+1\| \leq \| un\| 
if the nonlinear operator f satisfies

\| un + \tau f [un]\| \leq \| un\| \forall \tau \in [0, \tau FE ](1.2)
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A1782 JINGWEI LI, XIAO LI, LILI JU, AND XINLONG FENG

for some \tau FE > 0 and the linear operator \scrL satisfies

\| e\tau \scrL \| \leq 1 \forall \tau \geq 0.(1.3)

It is observed that the restriction on the time-step size of IFRK methods to be SSP
only comes from the nonlinear term, while the restrictions from both linear and non-
linear parts must be enforced for the standard Runge--Kutta (RK) method. This
implies that the IFRK method can be more efficient than the standard RK method,
especially in the case that the linear part of (1.1) is highly stiff.

An initial exploration of high-order MBP-preserving schemes based on the IFRK
method was recently made in [26]. Resorting to the SSP property or similarly the total
variation bounded (TVB) property [17, 24], several MBP-preserving IFRK schemes
up to the fourth-order accuracy were presented under the appropriate variants of (1.2)
and (1.3). However, all these schemes still need certain constraints on the time-step
size, which comes from (1.2). In this paper, we would like to completely remove the
constraints on the time-step size and develop unconditionally MBP-preserving IFRK
schemes. To this end, one of the key ingredients is the application of the linear stabi-
lization technique. The stabilization was first introduced in [45] in order to improve
the energy stability of the linear semi-implicit Euler scheme for the phase-field model.
The main idea is to add and subtract a linear term \kappa u in the original equation, where
\kappa \geq 0 is a stabilizing constant, and to make the linear part, combined with the term
\kappa u, dominate the nonlinear part by choosing the value of \kappa appropriately. As a result,
the stability is improved without sacrificing the linearity of the original semi-implicit
scheme. Apart from the applications of the stabilization technique mentioned in the
previous paragraphs, there has been a large amount of literature on the stabilized
numerical schemes for phase-field models; see [15, 38] and the references therein.

The main contribution of our work in this paper is to develop a family of stabilized
IFRK (sIFRK) time-stepping schemes for the semilinear parabolic equation (1.1) with
unconditional preservation of the MBP. In particular, we derive sufficient conditions
for the sIFRK method to preserve the MBP without any constraint on the time-step
size, and we present some examples of such an sIFRK method with up to third-order
accuracy in time. In addition, we also show that the stabilized versions of many
classic SSP-IFRK schemes developed in [25] do not satisfy these conditions except
the first-order one.

The rest of the paper is organized as follows. In section 2, we briefly review the
abstract framework developed in [10] for semilinear parabolic equations, including
the formulation of an equivalent form of (1.1) with linear stabilization and the condi-
tions on the linear and nonlinear operators in order to possess the MBP. In section 3,
we propose the sIFRK method in the general Butcher form and derive the sufficient
conditions such that the method can preserve the MBP unconditionally. Conver-
gence analysis of the sIFRK method is then provided, as well as energy boundedness.
In addition, we also investigate the SSP-sIFRK method and the corresponding suf-
ficient conditions for unconditional MBP preservation. Some unconditionally MBP-
preserving sIFRK schemes with, respectively, first-, second-, and third-order temporal
accuracies are then presented and discussed in detail in section 4. In section 5, var-
ious numerical experiments, including 2D and 3D cases, are performed to verify the
convergence and the unconditional MBP preservation of the proposed method. Some
concluding remarks are finally given in section 6.

2. Overview of the MBP. In this section, we give a brief review of the abstract
framework established in [10] for analysis of the MBP of semilinear parabolic equations
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sIFRK METHOD AND UNCONDITIONAL PRESERVATION OF MBP A1783

with the form of (1.1). The basic assumptions for the operators will be given along
with the main results while all details will be omitted.

For simplicity, let us consider the semilinear parabolic equation (1.1) with \scrL :
C2(\Omega ) \rightarrow C(\Omega ) being the Laplace operator (or a second-order elliptic differential
operator [13]), subject to the initial condition

u(0,\bfitx ) = u0(\bfitx ), \bfitx \in \Omega ,(2.1)

and the homogeneous Neumann or the periodic boundary condition (only for a rec-

tangular domain \Omega =
\prod d

i=1(ai, bi)) on \partial \Omega . It is well known from classic analysis [12]
that the operator \scrL generates a contraction semigroup \{ S\scrL (t)\} t\geq 0 with respect to the
supremum norm on the subspace of C(\Omega ) that satisfies such a boundary condition.
Next we make the following assumption on the operator f .

Assumption 1. The nonlinear operator f acts as a composite function induced by
a given one-variable continuously differentiable function f0 : \BbbR \rightarrow \BbbR , i.e.,

f [w](\bfitx ) = f0(w(\bfitx )) \forall w \in C(\Omega ), \forall \bfitx \in \Omega ,(2.2)

and there exists a constant \gamma > 0 such that f0(\gamma ) \leq 0 \leq f0( - \gamma ).

Then we have the following result on the MBP for the semilinear parabolic equa-
tion (1.1).

Theorem 2.1 ([10]). Let T > 0 be a constant. Under Assumption 1, if \| u0\| C(\Omega ) \leq 
\gamma , then (1.1), subject to the homogeneous Neumann or periodic boundary condition,
has a unique solution u \in C([0, T ]\times \Omega ), and it satisfies \| u(t)\| C(\Omega ) \leq \gamma for all t \in [0, T ].

The continuity of a function defined on a set D \subset \BbbR d is defined as follows [36]:

w is continuous at \bfitx \ast \in D \Leftarrow \Rightarrow \forall \bfitx k \rightarrow \bfitx \ast in D implies w(\bfitx k) \rightarrow w(\bfitx \ast ).

Then under the same analysis framework, the MBP of Theorem 2.1 can be further
extended to the case of finite dimensional operators in space [10], such as discrete
approximations of \scrL , denoted by \scrL h, in which the domain of a function is the set of all
spatial grid points (boundary and interior points), denoted by X. The corresponding
space-discrete equation of (1.1) with \scrL h becomes an ordinary differential equation
(ODE) system taking the same form:

ut = \scrL hu+ f [u], t > 0, \bfitx \in X\ast (2.3)

with u(0,\bfitx ) = u0(\bfitx ) for any \bfitx \in X, where X\ast = X for the homogeneous Neumann

boundary condition and X\ast = X \cap \Omega + with \Omega + =
\prod d

i=1(ai, bi] for the periodic one.
We further assume that the discrete operator \scrL h satisfies the following assumption.

Assumption 2. For any w \in C(X) and \bfitx 0 \in X\ast , if

w(\bfitx 0) = max
\bfitx \in X

w(\bfitx ),

then \scrL hw(\bfitx 0) \leq 0.

The continuous analogue of Assumption 2 is obviously satisfied by the second-
order elliptic differential operator \scrL . Assumption 2 guarantees that \scrL h generates a
contraction semigroup \{ S\scrL h(t)\} t\geq 0 on the subspace of C(X) satisfying the homoge-
neous Neumann (or periodic) boundary condition. It is easy to verify that such an
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A1784 JINGWEI LI, XIAO LI, LILI JU, AND XINLONG FENG

assumption holds for the discrete approximation of \scrL by the classic central difference
or lumped-mass finite element method. Note that in these cases, \scrL h can be simply

regarded as a square matrix and S\scrL h(t) = et\scrL 
h

as a matrix exponential. If both As-
sumptions 1 and 2 hold, then the space-discrete problem of (2.3) has a unique solution
u \in C([0, T ];C(X)) satisfying the MBP [10].

Remark 1. As studied in [10], the linear operator \scrL in (1.1) could be similarly
generalized to the nonlocal diffusion operator [8] and the fractional Laplace operator
[16], and the results of Theorem 2.1 still hold. Due to the nonlocality of these two
operators, the corresponding boundary conditions are now volume constraints. For
the nonlocal diffusion operator, the boundary condition is usually imposed on \Omega c,
a closed and bounded set surrounding \Omega with \partial \Omega \subset \Omega c; for the fractional Laplace
operator, the boundary condition is imposed on \BbbR d \setminus \Omega .

Let us introduce an artificial stabilizing constant \kappa > 0. The space-discrete
equation (2.3) can be rewritten in the equivalent form

ut = \scrL h
\kappa u+\scrN [u],(2.4)

where \scrL h
\kappa = \scrL h  - \kappa \scrI and \scrN = \kappa \scrI + f . According to (2.2) in Assumption 1, we know

\scrN [w](\bfitx ) = N0(w(\bfitx )) \forall w \in C(\Omega ), \forall \bfitx \in \Omega ,

where N0(\xi ) = \kappa \xi + f0(\xi ) for \xi \in \BbbR . The stabilizing constant \kappa is required to satisfy

\kappa \geq max
| \xi | \leq \gamma 

| f \prime 
0(\xi )| ,(2.5)

which always can be reached since f0 is continuously differentiable. Then, the follow-
ing lemma can be proved.

Lemma 2.2 ([10]). Under Assumption 1 and the requirement (2.5), it holds that
(i) | N0(\xi )| \leq \kappa \gamma for any \xi \in [ - \gamma , \gamma ];
(ii) | N0(\xi 1) - N0(\xi 2)| \leq 2\kappa | \xi 1  - \xi 2| for any \xi 1, \xi 2 \in [ - \gamma , \gamma ].

This lemma plays an important role on the MBP analysis of time integrations of
(1.1) and its space-discrete system (2.3). It was shown in [9, 10] that, when applied to
the equivalent equation (2.4) instead of the original one (2.3), the first- and second-
order ETD schemes, ETD1 and ETDRK2 [7, 47], satisfy the discrete MBP without
any restriction on the time-step size. The resulting schemes are called stabilized ETD
schemes for solving (1.1). However, such a result cannot be generalized to higher-order
(order greater than two) ETD schemes [10].

3. Unconditionally MBP-preserving sIFRK methods. From now on, we
suppose all assumptions stated in the previous section hold and focus our discussions
on time-stepping schemes of the space-discrete system (2.3).

3.1. sIFRK schemes and unconditional MBP preservation. Multiplying

both sides of (2.4) by e - t\scrL h
\kappa (as exponential integrating factor), we have

e - t\scrL h
\kappa (ut  - \scrL h

\kappa u) = e - t\scrL h
\kappa \scrN [u],

and thus

(e - t\scrL h
\kappa u)t = e - t\scrL h

\kappa \scrN [u].

D
ow

nl
oa

de
d 

05
/1

0/
22

 to
 1

58
.1

32
.1

61
.1

81
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

sIFRK METHOD AND UNCONDITIONAL PRESERVATION OF MBP A1785

A transformation of variable w = e - t\scrL h
\kappa u gives us the system

wt = e - t\scrL h
\kappa \scrN [et\scrL 

h
\kappa w] =: G(t, w),

which is then evolved forward in time from tn to tn+1 using the standard explicit
s-stage RK method [19] (s is a positive integer), that is,

w(0) = wn,(3.1a)

w(i) = wn + \tau 

i - 1\sum 
j=0

aijG(tn + cj\tau , w
(j)), 1 \leq i \leq s,(3.1b)

wn+1 = w(s),(3.1c)

where \tau = tn+1  - tn is the uniform time-step size,

aij \geq 0, 1 \leq i \leq s, 0 \leq j \leq i - 1,(3.2)

and

c0 = 0, ci =

i - 1\sum 
j=0

aij , 1 \leq i \leq s.(3.3)

For the sake of consistency, we also require that cs = 1 [19]. Then, transforming the
variable w back to u yields

u(0) = un,(3.4a)

u(i) = eci\tau \scrL 
h
\kappa un + \tau 

i - 1\sum 
j=0

aije
(ci - cj)\tau \scrL h

\kappa \scrN [u(j)], 1 \leq i \leq s,(3.4b)

un+1 = u(s).(3.4c)

The scheme (3.4) with the constraints (3.2) and (3.3) is called the sIFRK method for
solving the space-discrete system (2.3) of (1.1), in response to the standard IFRK
method (i.e., (3.4) with \scrL h

\kappa = \scrL h).

Remark 2. Note that the coefficients \{ aij\} and \{ ci\} in (3.4) have slightly different
meanings from the usual Butcher table (see, e.g., [19]). The formula (3.1) expresses
the RK method in a unified form for each stage, including the last one for wn+1, and
the classic Butcher table corresponding to (3.1) takes the following representation:

c0 0 0 0 \cdot \cdot \cdot 0 0
c1 a10 0 0 \cdot \cdot \cdot 0 0
c2 a20 a21 0 \cdot \cdot \cdot 0 0
...

...
...

...
. . .

...
...

cs - 2 as - 2,0 as - 2,1 as - 2,2 \cdot \cdot \cdot 0 0
cs - 1 as - 1,0 as - 1,1 as - 1,2 \cdot \cdot \cdot as - 1,s - 2 0
cs as0 as1 as2 \cdot \cdot \cdot as,s - 2 as,s - 1

(3.5)

We still call (3.4) the Butcher form of the sIFRK method.

Now, we investigate the MBP preservation of the sIFRK method (3.4). To this
end, we use the notation \| \cdot \| to represent the vector \infty -norm and then define the
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induced matrix \infty -norm as \| e\tau \scrL h\| = sup\| w\| =1 \| e\tau \scrL 
h

w\| . Since \{ e\tau \scrL h\} \tau \geq 0 is a con-

traction semigroup, which means \| e\tau \scrL h\| \leq 1 for any \tau \geq 0, we have

\| e\tau \scrL 
h
\kappa \| \leq e - \kappa \tau \forall \tau \geq 0.(3.6)

In the following, we present our main result on sufficient conditions for the sIFRK
method (3.4) in the Butcher form to be unconditionally MBP-preserving.

Theorem 3.1. Suppose that the Butcher table (3.5) of the sIFRK method satisfies
(i) the property of nondecreasing abscissas, i.e., 0 = c0 \leq c1 \leq c2 \leq \cdot \cdot \cdot \leq cs = 1;

(ii) for i = 1, 2, . . . , s, the function gi(x) := e - cix + x
\sum i - 1

j=0 aije
 - (ci - cj)x is non-

increasing on [0,\infty ).
Then, if \| un\| \leq \gamma , the solution un+1 obtained from (3.4) always satisfies \| un+1\| \leq \gamma 
for any \tau > 0.

Proof. By using the condition (i) and the inequality (3.6), it is easy to show that,
for each i in (3.4b), we have

\| u(i)\| \leq \| eci\tau \scrL 
h
\kappa \| \| un\| + \tau 

i - 1\sum 
j=0

aij\| e(ci - cj)\tau \scrL h
\kappa \| \| \scrN [u(j)]\| 

\leq e - ci\kappa \tau \| un\| + \tau 

i - 1\sum 
j=0

aije
 - (ci - cj)\kappa \tau \| \scrN [u(j)]\| .(3.7)

Let us assume \| u(j)\| \leq \gamma for all j \leq i - 1. Then, we can derive from Lemma 2.2 and
(3.7) that

\| u(i)\| \leq e - ci\kappa \tau \gamma + \tau 

i - 1\sum 
j=0

aije
 - (ci - cj)\kappa \tau \kappa \gamma = gi(\kappa \tau )\gamma .(3.8)

Based on the condition (ii), we have gi(\kappa \tau ) \leq gi(0) = 1, and consequently we have
\| u(i)\| \leq \gamma from (3.8). By induction, we obtain \| u(i)\| \leq \gamma for i = 1, 2, . . . , s, and thus,
\| un+1\| \leq \gamma .

Remark 3. It is observed from the proof that, under the conditions of Theorem
3.1, if \| un\| \leq \gamma , then all internal stages of the sIFRK method are also bounded in the
norm by \gamma , that is, \| u(i)\| \leq \gamma for 1 \leq i \leq s. Actually, this bound could be sharper;
for example, \| un+1\| is actually bounded by gs(\kappa \tau )\gamma instead of \gamma .

Later in section 4, we will present some examples of unconditionally MBP-preserving
sIFRK schemes up to the third-order temporal accuracy by verifying the conditions
(i) and (ii) in Theorem 3.1.

3.2. Convergence analysis and energy stability. In the theory of numerical
ODEs, the RK method (3.1) is often called an s-stage, pth-order method if the Butcher
table (3.5) satisfies some appropriate order conditions in the truncation error; see, e.g.,
[19]. For simplicity, instead of introducing these order conditions, we assume that the
RK method (3.1) with coefficients (3.5) possesses the accuracy of order p. Based on
this assumption, we now present the error estimates of the sIFRK method (3.4).

Theorem 3.2. For a fixed T > 0, assume that the function f0 in (2.2) is p-times
continuously differentiable on [ - \gamma , \gamma ] and the exact solution u(t) of the space-discrete
equation (2.3) with the initial data u0 is sufficiently smooth in [0, T ]. Let \{ un\} be the
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sIFRK METHOD AND UNCONDITIONAL PRESERVATION OF MBP A1787

sequence generated by the sIFRK method (3.4) for (2.3) with u0 = u0. Under the
conditions of Theorem 3.1, if \| u0\| \leq \gamma , then we have, for any \tau > 0,

\| u(tn) - un\| \leq C(e2\kappa stn  - 1)\tau p,

where the constant C > 0 is independent of \tau .

Proof. Following [11], we introduce the reference functions Ui for 0 \leq i \leq s, with
U0 = u(tn) and Us = u(tn+1), determined by

Ui = eci\tau \scrL 
h
\kappa u(tn) + \tau 

i - 1\sum 
j=0

aije
(ci - cj)\tau \scrL h

\kappa \scrN [Uj ] +Ri, 1 \leq i \leq s,(3.9)

where Ri is the truncation error satisfying

R0 = R1 = \cdot \cdot \cdot = Rs - 1 = 0, \| Rs\| \leq Cs\tau 
p+1,

where the constant Cs > 0 depends on the Cp[0, T ]-norm of u, the Cp[ - \gamma , \gamma ]-norm of
f0, p, and \kappa but is independent of \tau .

Define en = u(tn)  - un and ei = Ui  - u(i) for 0 \leq i \leq s; then e0 = en and
es = en+1. Subtracting (3.4b) from (3.9) yields

ei = eci\tau \scrL 
h
\kappa en + \tau 

i - 1\sum 
j=0

aije
(ci - cj)\tau \scrL h

\kappa (\scrN [Uj ] - \scrN [u(j)]) +Ri, 1 \leq i \leq s.

Since \| u(j)\| \leq \gamma by Remark 3, using Lemma 2.2, we can obtain

\| \scrN [Uj ] - \scrN [u(j)]\| \leq 2\kappa \| Uj  - u(j)\| = 2\kappa \| ej\| .

Then for 1 \leq i \leq s - 1, we derive

\| ei\| \leq \| eci\tau \scrL 
h
\kappa \| \| en\| + \tau 

i - 1\sum 
j=0

aij\| e(ci - cj)\tau \scrL h
\kappa \| \| \scrN [Uj ] - \scrN [u(j)]\| 

\leq \| en\| + 2\kappa \tau 

i - 1\sum 
j=0

\| ej\| ,

where we have used (3.6) and e - \kappa \tau \leq 1 for any \tau \geq 0 and \kappa > 0. By induction, we
can obtain

\| ei\| \leq (1 + 2\kappa \tau )i\| en\| , 1 \leq i \leq s - 1.

Thus, for i = s we immediately get

\| en+1\| \leq \| e\tau \scrL 
h
\kappa \| \| en\| + \tau 

s - 1\sum 
j=0

asj\| e(1 - cj)\tau \scrL h
\kappa \| \| \scrN [Uj ] - \scrN [u(j)]\| + \| Rs\| 

\leq \| en\| + 2\kappa \tau 

s - 1\sum 
j=0

\| ej\| + Cs\tau 
p+1

\leq (1 + 2\kappa \tau )s\| en\| + Cs\tau 
p+1.
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A1788 JINGWEI LI, XIAO LI, LILI JU, AND XINLONG FENG

By induction, we have

\| en\| \leq (1 + 2\kappa \tau )sn\| e0\| + Cs\tau 
p+1

n - 1\sum 
i=0

(1 + 2\kappa \tau )si

\leq (1 + 2\kappa \tau )sn\| e0\| + Cs

2\kappa s
(e2\kappa sn\tau  - 1)\tau p.

By letting C = Cs

2\kappa s , we obtain the desired result since e0 = 0 and n\tau = tn.

As an application of the convergence result, we next investigate the energy sta-
bility. The semilinear parabolic equation (1.1) as a phase-field model can be regarded
as the gradient flow driven by the energy

E[u] =  - 1

2
(u,\scrL u) + (F (u), 1),

where F \prime (u) =  - f0(u) and (\cdot , \cdot ) denotes the usual L2 inner product in \Omega . The solution
to the phase-field model decreases the energy in time until a steady state is reached.
Although we could not prove the energy decay property for numerical solution of (1.1)
produced by the sIFRK method, we can obtain a uniform bound of the energy at any
time step. More precisely, for small enough time-step size \tau , it holds that

E[un] \leq E[u0] + C0,

where the constant C0 > 0 is independent of \tau . The proof can be done based on the
convergence result from Theorem 3.2 and the same process used in [9], so we omit the
details.

3.3. SSP-sIFRK schemes. As done in [39], with some given \{ \alpha ij\} for 1 \leq i \leq s
and 0 \leq j \leq i - 1 such that

\alpha ij \geq 0,

i - 1\sum 
j=0

\alpha ij = 1, 1 \leq i \leq s,(3.10)

one can transform the sIFRK method (3.4) with (3.2) and (3.3) in the Butcher form
into the following Shu--Osher form:

u(0) = un,(3.11a)

u(i) =

i - 1\sum 
j=0

e(ci - cj)\tau \scrL h
\kappa 
\bigl( 
\alpha iju

(j) + \tau \beta ij\scrN [u(j)]
\bigr) 

for 1 \leq i \leq s,(3.11b)

un+1 = u(s),(3.11c)

where \beta ij = aij  - 
\sum i - 1

k=j+1 \alpha ikakj . Such a formula with \kappa = 0 (i.e., \scrL h
\kappa = \scrL h) has been

used in [25] to investigate the SSP property of numerical schemes for (1.1) and later
the MBP-preserving property in [26].

If all coefficients in (3.11b) additionally satisfy that

\beta ij \geq 0, and \beta ij = 0 if the corresponding \alpha ij = 0, 0 \leq j < i \leq s,(3.12)

then the right-hand side of (3.11b) is clearly a convex combination of a class of
integrating factor Euler substeps:

u(j) \mapsto \rightarrow e(ci - cj)\tau \scrL h
\kappa 

\Bigl( 
u(j) + \tau 

\beta ij

\alpha ij
\scrN [u(j)]

\Bigr) 
, 0 \leq j \leq i - 1.
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Thus, we call the time-stepping formula (3.11) with constraints (3.10) and (3.12) the
SSP-sIFRK method, which is the correspondingly stabilized version of the SSP-IFRK
(i.e., with \kappa = 0) developed in [25]. Obviously, an sIFRK method may not be an
SSP-sIFRK method due to the extra requirement (3.12). It is also worth noting that
the MBP only holds conditionally for the SSP-IFRK method [26] in the sense that
some restriction on the time-step size is needed.

The following result on the sufficient conditions for the SSP-sIFRK method to
be unconditionally MBP-preserving can be derived directly based on the Shu--Osher
form (3.11).

Theorem 3.3. Suppose that the coefficients \{ \alpha ij\} , \{ \beta ij\} satisfy (3.10) and (3.12),
respectively, and that \{ ci\} satisfies the condition (i) of Theorem 3.1. In addition, sup-
pose that for 0 \leq j < i \leq s,

\beta ij

\alpha ij
\leq ci  - cj ,(3.13)

if \alpha ij \not = 0. Then, if \| un\| \leq \gamma , the solution un+1 obtained from (3.11) always satisfies
\| un+1\| \leq \gamma for any \tau > 0.

Proof. Assume \| u(j)\| \leq \gamma for j \leq i  - 1. Using Lemma 2.2 and (3.6), we obtain
from (3.11b) that

\| u(i)\| \leq 
i - 1\sum 
j=0

\alpha ij\| e(ci - cj)\tau \scrL h
\kappa \| 

\bigm\| \bigm\| \bigm\| u(j) + \tau 
\beta ij

\alpha ij
\scrN [u(j)]

\bigm\| \bigm\| \bigm\| 
\leq 

i - 1\sum 
j=0

\alpha ije
 - (ci - cj)\kappa \tau 

\Bigl( 
\gamma + \tau 

\beta ij

\alpha ij
\cdot \kappa \gamma 

\Bigr) 

\leq \gamma 

i - 1\sum 
j=0

\alpha ij

1 + (ci  - cj)\kappa \tau 

\Bigl( 
1 +

\beta ij

\alpha ij
\kappa \tau 

\Bigr) 
,(3.14)

where we used the fact e - a \leq 1
1+a for any a \geq 0 in the last inequality. Then, the

combination of (3.13) and (3.14) gives us

\| u(i)\| \leq \gamma 

i - 1\sum 
j=0

\alpha ij = \gamma .

By induction, we finally obtain \| un+1\| = \| u(s)\| \leq \gamma , which completes the proof.

Remark 4. The sufficient conditions for unconditional MBP preservation of the
SSP-sIFRK method given in Theorem 3.3 are easier to check than the ones stated in
Theorem 3.1 for testing the case of sIFRK method, but they are not equivalent. Note
that the SSP-sIFRK schemes (3.11) are mostly obtained by basing the IFRK method
on the optimal canonical Shu--Osher form with nondecreasing abscissas. On the other
hand, one also could follow the similar idea as in [25] to establish a system of equations
and inequalities with respect to the coefficients \alpha ij , \beta ij , and ci based on the conditions
(3.3), (3.10), (3.12), and (3.13) and then construct unconditionally MBP-preserving
SSP-sIFRK schemes by solving the optimization problem for the coefficients.

Remark 5. As an analogue to SSP schemes, the TVB schemes [17, 24] also could
preserve the MBP under certain constraints on the time-step size. Several condi-
tionally MBP-preserving IFRK schemes found in our recent work [26] are based on
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the combination of the TVB property and the IFRK method. In order to remove
these constraints, one potential way is still to add a linear stabilization term in these
schemes as done in this paper.

4. Examples of unconditionally MBP-preserving sIFRK method. In
this section, we present some examples of the sIFRK method which are uncondi-
tionally MBP-preserving by checking the sufficient conditions stated in Theorem 3.1
or Theorem 3.3. In addition, we also show that the SSP-sIFRK schemes, that is,
the SSP-IFRK schemes developed in [25, 26] with the proposed stabilization, fail
to hold these conditions except the first-order one. For simplicity of notations,
we denote by sIFRK(s,p) the s-stage, pth-order sIFRK method and by the vector
c = [c0, c1, c2, . . . , cs]

T the abscissas.

4.1. First-order sIFRK scheme. The sIFRK(1,1) scheme is given by

un+1 = e\tau \scrL 
h
\kappa (un + \tau \scrN [un]).

Here, c = [0, 1]T and g1(x) = e - x+xe - x satisfies the conditions (i) and (ii) in Theorem
3.1; thus sIFRK(1,1) is unconditionally MBP-preserving. Note that sIFRK(1,1) is also
an SSP-sIFRK method at the same time since both (3.10) and (3.12) hold. Moreover,
one can find that g1(x) < 1 for x > 0 and | g1(x) - 1| = \scrO (x2).

4.2. Second-order sIFRK schemes. The family of sIFRK(s,2) schemes [40]
with c = [0, 1

s ,
2
s , . . . , 1]

T (thus the condition (i) in Theorem 3.1 holds) are defined by

the following: u(0) = un,

u(i) = e
\tau 
s \scrL 

h
\kappa 

\Bigl( 
u(i - 1) +

\tau 

s
\scrN [u(i - 1)]

\Bigr) 
(4.1a)

= e
i\tau 
s \scrL h

\kappa un +
\tau 

s

i - 1\sum 
j=0

e
(i - j)\tau 

s \scrL h
\kappa \scrN [u(j)], 1 \leq i \leq s - 1,

un+1 = e\tau \scrL 
h
\kappa un +

\tau 

s - 1

s - 1\sum 
j=1

e
(s - j)\tau 

s \scrL h
\kappa \scrN [u(j)].(4.1b)

Here, we have

gi(x) = e - 
i
sx +

x

s

i - 1\sum 
j=0

e - 
i - j
s x, 1 \leq i \leq s - 1,

gs(x) = e - x +
x

s - 1

s - 1\sum 
j=1

e - 
s - j
s x,

which can be shown to be nonincreasing on [0,\infty ) by checking their derivatives (i.e.,
the condition (ii) in Theorem 3.1 holds). Thus, all sIFRK(s,2) schemes defined by
(4.1) are unconditionally MBP-preserving.

For convenience of use, we list some of sIFRK(s,2) methods as follows:
\bullet sIFRK(2,2) with c = [0, 1

2 , 1]
T :

u(1) = e
\tau 
2\scrL 

h
\kappa 

\Bigl( 
un +

\tau 

2
\scrN [un]

\Bigr) 
,

un+1 = e\tau \scrL 
h
\kappa un + \tau e

\tau 
2\scrL 

h
\kappa \scrN [u(1)].
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\bullet sIFRK(3,2) with c = [0, 1
3 ,

2
3 , 1]

T :

u(1) = e
\tau 
3\scrL 

h
\kappa 

\Bigl( 
un +

\tau 

3
\scrN [un]

\Bigr) 
,

u(2) = e
\tau 
3\scrL 

h
\kappa 

\Bigl( 
u(1) +

\tau 

3
\scrN [u(1)]

\Bigr) 
,

un+1 = e\tau \scrL 
h
\kappa un +

\tau 

2
e

2\tau 
3 \scrL h

\kappa \scrN [u(1)] +
\tau 

2
e

\tau 
3\scrL 

h
\kappa \scrN [u(2)].

\bullet sIFRK(4,2) with c = [0, 1
4 ,

2
4 ,

3
4 , 1]

T :

u(1) = e
\tau 
4\scrL 

h
\kappa 

\Bigl( 
un +

\tau 

4
\scrN [un]

\Bigr) 
,

u(2) = e
\tau 
4\scrL 

h
\kappa 

\Bigl( 
u(1) +

\tau 

4
\scrN [u(1)]

\Bigr) 
,

u(3) = e
\tau 
4\scrL 

h
\kappa 

\Bigl( 
u(2) +

\tau 

4
\scrN [u(2)]

\Bigr) 
,

un+1 = e\tau \scrL 
h
\kappa un +

\tau 

3
e

3\tau 
4 \scrL h

\kappa \scrN [u(1)] +
\tau 

3
e

\tau 
2\scrL 

h
\kappa \scrN [u(2)] +

\tau 

3
e

\tau 
4\scrL 

h
\kappa \scrN [u(3)].

As pointed out in [25], more stages in the methods lead to more accurate numerical
results. We will verify it in the next section by using the second-order methods
presented above.

Remark 6. We note that all of the SSP-sIFRK(s, 2) schemes proposed in [25] do
not satisfy the conditions in Theorems 3.1 and 3.3. The SSP-sIFRK(s, 2) schemes
take the following unified form: u(0) = un,

u(i) = e
\tau 

s - 1\scrL 
h
\kappa 

\Bigl( 
u(i - 1) +

\tau 

s - 1
\scrN [u(i - 1)]

\Bigr) 
(4.2a)

= e
i\tau 

s - 1\scrL 
h
\kappa un +

\tau 

s - 1

i - 1\sum 
j=0

e
(i - j)\tau 
s - 1 \scrL h

\kappa \scrN [u(j)], 1 \leq i \leq s - 1,

un+1 =
1

s
e\tau \scrL 

h
\kappa un +

s - 1

s

\Bigl( 
u(s - 1) +

\tau 

s - 1
\scrN [u(s - 1)]

\Bigr) 
(4.2b)

= e\tau \scrL 
h
\kappa un +

\tau 

s

s - 2\sum 
j=0

e
(s - 1 - j)\tau 

s - 1 \scrL h
\kappa \scrN [u(j)] +

\tau 

s
\scrN [u(s - 1)].

Here, c = [0, 1
s - 1 ,

2
s - 1 , . . . ,

s - 2
s - 1 , 1, 1]

T . One can easily see that

\beta s,s - 1

\alpha s,s - 1
=

1

s - 1
> 0 = cs  - cs - 1,

which violates (3.13) in Theorem 3.3. Moreover, it also does not satisfy the condition
(ii) in Theorem 3.1 with

gs(x) = e - x +
x

s

s - 2\sum 
j=0

e - 
s - 1 - j
s - 1 x +

x

s
.

4.3. Third-order sIFRK schemes. Unlike the second-order schemes, we do
not have a general form for third-order or higher-order schemes. Below, we present
one third-order sIFRK scheme, which satisfies the conditions (i) and (ii) in Theorem
3.1 (we simply omit the details of verification) and thus is unconditionally MBP-
preserving.

D
ow

nl
oa

de
d 

05
/1

0/
22

 to
 1

58
.1

32
.1

61
.1

81
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1792 JINGWEI LI, XIAO LI, LILI JU, AND XINLONG FENG

The scheme is given by Heun-sIFRK(3,3) with c = [0, 1
3 ,

2
3 , 1]

T [40]:

u(1) = e
\tau 
3\scrL 

h
\kappa un +

\tau 

3
e

\tau 
3\scrL 

h
\kappa \scrN [un],

u(2) = e
2\tau 
3 \scrL h

\kappa un +
2\tau 

3
e

\tau 
3\scrL 

h
\kappa \scrN [u(1)],

un+1 = e\tau \scrL 
h
\kappa un +

\tau 

4
e\tau \scrL 

h
\kappa \scrN [un] +

3\tau 

4
e

\tau 
3\scrL 

h
\kappa \scrN [u(2)].

Remark 7. The SSP-sIFRK(3, 3) scheme proposed in [25] takes the following
form:

u(1) = e
2\tau 
3 \scrL h

\kappa 

\Bigl( 
un +

2

3
\tau \scrN [un]

\Bigr) 
,

u(2) =
2

3
e

2\tau 
3 \scrL h

\kappa un +
1

3

\Bigl( 
u(1) +

4

3
\tau \scrN [u(1)]

\Bigr) 
,

un+1 =
59

128
e\tau \scrL 

h
\kappa un +

15

128
e\tau \scrL 

h
\kappa 

\Bigl( 
un +

4

3
\tau \scrN [un]

\Bigr) 
+

27

64
e

\tau 
3\scrL 

h
\kappa 

\Bigl( 
u(2) +

4

3
\tau \scrN [u(2)]

\Bigr) 
.

Here, c = [0, 2
3 ,

2
3 , 1]

T . One can easily see

\beta 2,1

\alpha 2,1
=

4

3
> 0 = c2  - c1,

which violates (3.13) in Theorem 3.3. Moreover, it also does not satisfy the condition
(ii) in Theorem 3.1 with

g2(x) = e - 
2
3x +

2x

9
e - 

2
3x +

4x

9
.

Remark 8. We have not found so far in the literature any fourth-order or higher-
order sIFRK scheme in the explicit form satisfying the conditions in Theorem 3.1.
Alternatively, one may further consider the fully implicit IFRK approach, as done in
[25] for the SSP method, to develop MBP-preserving schemes.

5. Numerical experiments. In this section, we carry out some numerical ex-
periments to demonstrate the performance of the sIFRK schemes presented in section
4. The spatial discretization is performed by the central difference method for all
examples, and the matrix exponentials are implemented by using the fast Fourier
transform [28, 29]. First, the convergence rates in time and space are verified by
testing a benchmark Allen--Cahn traveling wave problem. Second, we verify the un-
conditional MBP preservation of the schemes by various evolution examples. In the
end, we present a 3D simulation example to show effectiveness of the proposed method.

5.1. Convergence tests. It is well known that the 2D Allen--Cahn equation in
the whole space has a traveling wave solution. Let us take the domain \Omega = ( - 0.5, 0.5)2

and consider the equation

ut = \Delta u+
1

\epsilon 2
(u - u3), t > 0, (x, y) \in \Omega (5.1)

with the initial data

u0(x, y) =
1

2

\biggl( 
1 - tanh

\Bigl( x

2
\surd 
2\epsilon 

\Bigr) \biggr) 
.
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The periodic boundary condition is imposed to allow for an approximate traveling
wave solution (for \epsilon \ll 1) of the form

u(t, x, y) =
1

2

\biggl( 
1 - tanh

\Bigl( x - st

2
\surd 
2\epsilon 

\Bigr) \biggr) 
,

where s = 3\surd 
2\epsilon 
. We set \epsilon = 0.015 and the ending time T =

\surd 
2\epsilon 
4 . In this setting, the

stabilizing constant is chosen as \kappa = 2
\epsilon 2 .

Setting h = 1/2048, we then compute the numerical solutions with various time-
step sizes by the proposed schemes. The numerical errors of the solutions at t = T
and corresponding convergence rates are given in Tables 5.1--5.3, where the desired
temporal convergence rates (1 for sIFRK(1,1), 2 for sIFRK(s,2), and 3 for Heun-
sIFRK(3,3)) are obviously observed. As expected, the error constants are smaller for
the schemes with more stages for a fixed order of accuracy.

Next, we test the convergence with respect to the spatial mesh size h using the
sIFRK(2,2) scheme with \tau = T/2048. The numerical errors of the solutions at t = T
and corresponding convergence rates are presented in Table 5.4, and it is observed that
the spatial convergence is of second order, which is consistent with the expectation
for the central difference method.

Table 5.1
Errors and convergence rates in time of the traveling wave problem (5.1) using the first-order

sIFRK scheme with h = 1/2048 (\delta = T/128).

\tau L2 Error Rate L\infty Error Rate

sIFRK(1,1)

\delta 8.4586e-01 -- 9.9870e-01 --
\delta /2 5.6129e-01 0.59 9.7073e-01 0.04
\delta /4 3.5269e-01 0.67 8.1648e-01 0.24
\delta /8 2.0037e-01 0.81 5.3899e-01 0.59
\delta /16 1.0573e-01 0.92 3.0023e-01 0.84
\delta /32 5.3960e-02 0.97 1.5577e-01 0.95

Table 5.2
Errors and convergence rates in time of the traveling wave problem (5.1) using the second-order

sIFRK schemes with h = 1/2048 (\delta = T/32).

\tau L2 Error Rate L\infty Error Rate

sIFRK(2,2)

\delta 8.4566e-01 -- 9.9917e-01 --
\delta /2 4.7032e-01 0.84 9.3871e-01 0.09
\delta /4 2.0091e-01 1.22 5.5135e-01 0.76
\delta /8 6.3380e-02 1.66 1.8665e-01 1.56
\delta /16 1.7488e-02 1.85 5.1933e-02 1.84
\delta /32 4.5077e-03 1.95 1.3401e-02 1.95

sIFRK(3,2)

\delta 7.3155e-01 -- 9.9722e-01 --
\delta /2 4.0349e-01 0.85 8.8763e-01 0.16
\delta /4 1.6074e-01 1.32 4.5403e-01 0.96
\delta /8 4.8871e-02 1.71 1.4456e-01 1.65
\delta /16 1.3275e-02 1.88 3.9471e-02 1.87
\delta /32 3.3790e-03 1.97 1.0052e-02 1.97

sIFRK(4,2)

\delta 6.7288e-01 -- 9.9437e-01 --
\delta /2 3.6256e-01 0.89 8.4291e-01 0.23
\delta /4 1.3836e-01 1.38 3.9619e-01 1.08
\delta /8 4.1285e-02 1.74 1.2239e-01 1.69
\delta /16 1.1122e-02 1.89 3.3097e-02 1.88
\delta /32 2.8059e-03 1.98 8.3543e-03 1.98
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Table 5.3
Errors and convergence rates in time of the traveling wave problem (5.1) using the third-order

sIFRK scheme with h = 1/2048 (\delta = T/16).

\tau L2 Error Rate L\infty Error Rate

Heun-
sIFRK(3,3)

\delta 8.8453e-01 -- 9.9956e-01 --
\delta /2 4.5029e-01 0.97 9.2778e-01 0.10
\delta /4 1.4266e-01 1.65 4.0876e-01 1.18
\delta /8 2.7399e-02 2.38 8.1593e-02 2.32
\delta /16 4.1342e-03 2.72 1.2337e-02 2.72
\delta /32 4.6608e-04 3.14 1.3954e-03 3.14

Table 5.4
Errors and convergence rates in space of the traveling wave problem (5.1) using the sIFRK(2,2)

scheme with \tau = T/2048.

h L2 Error Rate L\infty Error Rate

1/32 3.6280e-01 -- 8.2219e-01 --
1/64 1.2410e-01 1.54 3.3584e-01 1.29
1/128 3.3108e-02 1.90 9.6036e-02 1.80
1/256 8.3700e-03 1.98 2.4480e-02 1.97
1/512 2.0878e-03 2.00 6.1317e-03 1.99
1/1024 5.2727e-04 1.98 1.5341e-03 1.99

5.2. MBP preservation. Some examples will be tested to demonstrate the
MBP preservation of the proposed sIFRK schemes. The first one focuses on the
Allen--Cahn equation with the Flory--Huggins potential consisting of a logarithmic
term. The second one takes simulation of the classic shrinking bubble example for
illustration. The third one is used to numerically show that the SSP-sIFRK(2,2) [25]
could not hold the MBP unconditionally as discussed in Remark 6. We still take the
domain \Omega = ( - 0.5, 0.5)2 for all experiments in this subsection.

We consider the Allen--Cahn equation

ut = \epsilon 2\Delta u+ f(u)(5.2)

subject to periodic boundary condition, where \epsilon = 0.01 and f(u) is the negative of
the derivative of the Flory--Huggins potential, that is,

f(u) =
\theta 

2
ln

1 - u

1 + u
+ \theta cu,

where \theta = 0.8 and \theta c = 1.6. In this setting, the positive root of the equation f(\rho ) = 0
is \rho \approx 0.9575, which is the uniform bound of the exact solution in absolute value, and
the stabilizing constant is chosen as \kappa = 8.02.

We partition the spatial domain by a uniform mesh with the size h = 1/1024,
and a random data ranging from  - 0.9 to 0.9 is generated on the mesh as the initial
configuration. We conduct the simulations by using the proposed sIFRK schemes with
the time-step size \tau = 0.01. Figure 5.1 shows the evolutions of the energies and the
supremum norms of the approximate solutions. We observe that the energy decreases
monotonically and the MBP is preserved perfectly for all of them. However, there is
an obvious large gap between the theoretical bound 0.9575 and the supremum norm
of the steady state obtained by sIFRK(1,1). The reason is what we have mentioned in
Remark 3, that is, g1(\kappa \tau ) < 1 and the difference is of order \scrO ((\kappa \tau )2) as discussed in
section 4.1. This implies that the first-order sIFRK method is practically not accurate
although stable when the time-step size \tau is not small enough.
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Fig. 5.1. Evolutions of energies (left) and supremum norms (right) calculated by using
sIFRK(1, 1) (top), sIFRK(s, 2) (middle), and Heun-sIFRK(3, 3) (bottom) with \tau = 0.01.

Now, we consider a classic example for simulating a shrinking bubble driven by
the Allen--Cahn equation (5.2) with \epsilon = 0.01 and

f(u) = u - u3(5.3)

subject to the homogeneous Neumann boundary condition. The initial bubble is given
by

u0(x, y) =

\biggl\{ 
1 if x2 + y2 \leq 0.252,

 - 1 otherwise

and illustrated in Figure 5.2.
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Fig. 5.2. Initial configuration of the bubble. Left: the surface-project view; right: the cross-
section view at y = 0.

Fig. 5.3. Evolution of the shrinking bubble obtained by using sIFRK(2, 2) with \tau = 0.01. From
left to right and from top to bottom: t = 50, 100, 150, 200, 250, and 300.

The sIFRK(2,2) scheme is adopted, and the parameters of the space-time mesh
are set to be h = 1/1024 and \tau = 0.01. Figure 5.3 presents the evolutions of the
bubble at times t = 50, 100, 150, 200, 250, and 300, respectively, and the left graph
in Figure 5.4 gives the corresponding cross-section views with y = 0. The right graph
in Figure 5.4 presents the evolution of the energy, which is monotonically decreasing.
The bubble shrinks smaller and smaller during the evolution and finally vanishes at
about t = 310.

Next, we numerically show that the SSP-sIFRK(2,2) scheme (4.2) is not un-
conditionally MBP-preserving in response to the discussion in Remark 6. To this
end, we consider the Allen--Cahn equation (5.2) with \epsilon = 0.01 and (5.3) subject to
the periodic boundary condition. The initial data is generated by a set of random
numbers ranging from  - 0.9 to 0.9 uniformly on the spatial mesh with h = 1/256.
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Fig. 5.4. The cross-section view with y = 0 (left) corresponding to Figure 5.3 and the evolution
of the energy (right).

Fig. 5.5. Evolution of the phase structure obtained by using SSP-sIFRK( 2,2) with \tau = 0.1.
From left to right and from top to bottom: t = 1, 5, 10, 50, 240, and 440.

The time-step size is set to be \tau = 0.1, which is 10 times larger than that in the
previous experiments. We first run the simulation using SSP-sIFRK(2,2) taking the
following form:

u(1) = e\tau \scrL 
h
\kappa (un + \tau \scrN [un]),

un+1 =
1

2
e\tau \scrL 

h
\kappa un +

1

2
(u(1) + \tau \scrN [u(1)]).

Then we re-run the simulation using sIFRK(2,2) with the same initial data. Fig-
ures 5.5 and 5.6 present the evolutions of the phase structures at t = 1, 5, 10, 50, 240,
and 440 produced by SSP-sIFRK(2,2) and sIFRK(2,2), respectively, which show that
the simulation results start to differ very soon although we use the same initial data
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Fig. 5.6. Evolution of the phase structure obtained by using sIFRK(2, 2) with \tau = 0.1. From
left to right and from top to bottom: t = 1, 5, 10, 50, 240, and 440.

Fig. 5.7. Evolutions of the supremum norm (left) and the energy (right) obtained by using
SSP-sIFRK(2, 2) with \tau = 0.1.

and space-time parameters. Figures 5.7 and 5.8 present the evolutions of the cor-
responding supremum norms and the energies for SSP-sIFRK(2,2) and sIFRK(2,2),
respectively. It is observed that the MBP is preserved perfectly by sIFRK(2,2) for
all time. However, the solution of SSP-sIFRK(2,2) has the supremum norm beyond 1
after t = 5.5, which implies SSP-sIFRK(2,2) does not preserve the MBP in this case.

In addition, we carry out the same experiment using sIFRK(2,2), but with dif-
ferent time-step sizes, \tau = 0.05 and 0.01. We found that both simulated processes
of the phase transition are almost identical to that illustrated in Figure 5.6. The
corresponding evolutions of the supremum norms and the energies are also given and
compared with those produced with \tau = 0.1 in Figure 5.8, which shows very small
differences between them. These observations partly imply that the error constant in
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Fig. 5.8. Evolutions of the supremum norm (left) and the energy (right) obtained by using
sIFRK(2, 2) with \tau = 0.1, 0.05, and 0.01.

Theorem 3.2 does not change much when those different time-step sizes are adopted,
and the performance of sIFRK(2,2) is still satisfactory, in terms of accuracy and
efficiency, for practical simulations with moderately large time-step sizes.

5.3. 3D simulations. The last experiment is devoted to numerical simulation
for the 3D Allen--Cahn equation (5.2) with \epsilon = 0.01 and (5.3). We take the domain
\Omega = ( - 0.5, 0.5)3 with a uniform spatial mesh of size h = 1/256 and generate the
initial data by the random numbers ranging from  - 0.9 to 0.9 on the mesh. The
sIFRK(2,2) scheme is used for the simulation. Figure 5.9 presents the evolutions of
the 3D phase structures at t = 1, 5, 10, 50, 240, and 350 with the time-step size

Fig. 5.9. Evolution of the 3D phase structure obtained by using sIFRK(2, 2) with \tau = 0.01.
From left to right and from top to bottom: t = 1, 5, 10, 50, 240, and 350.

D
ow

nl
oa

de
d 

05
/1

0/
22

 to
 1

58
.1

32
.1

61
.1

81
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1800 JINGWEI LI, XIAO LI, LILI JU, AND XINLONG FENG

Fig. 5.10. Evolutions of the supremum norm (left) and the energy (right) of the 3D simulations
obtained by using sIFRK(2, 2) with \tau = 0.1, 0.05, and 0.01.

\tau = 0.01, respectively. Figure 5.10 plots the evolutions of the supremum norm and
the energy of the numerical solutions with different time-step sizes \tau = 0.1, 0.05,
and 0.01. The MBP is well-preserved, and the energy decreases monotonically along
the time as shown in Figure 5.10. In addition, we again observe that there are only
very small differences among the curves corresponding to different time-step sizes,
which implies that sIFRK(2,2) still performs very well for 3D simulations even with
moderately large time-step sizes.

6. Conclusion. In this work, we first combine the linear stabilization technique
with the IFRK method to develop a family of sIFRK schemes. We derive sufficient
conditions to guarantee unconditional preservation of the MBP for the sIFRK method
written in different forms. Based on these conditions, we then check various existing
IFRK and SSP-IFRK schemes and identify the unconditionally MBP-preserving
schemes among them, as well as various numerical demonstrations. In addition, we
also find that many existing SSP-sIFRK schemes violate these conditions, except the
first-order one, and thus may not be unconditionally MBP-preserving as verified in
numerical experiments.

One important question remains whether the conditions in Theorem 3.1 or The-
orem 3.3 are also necessary for unconditional MBP preservation, which would be a
natural topic for our future research. It is also worth mentioning that Assumption 2
implies that the operator \scrL h is dissipative. Discretizing \scrL with the central difference
method or the lumped-mass finite element method satisfies Assumption 2 since the
resulting discrete matrix is an M -matrix. As we know, the matrix corresponding to
the spectral collocation method is usually not an M -matrix. Thus another question
is whether such an assumption is necessary for the space-discrete system to possess
the MBP and subsequently for the fully discrete system.
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this paper a lot.

REFERENCES

[1] S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its
application to antiphase domain coarsening, Acta Metall., 27 (1979), pp. 1085--1095.

[2] G. Beylkin, J. M. Keiser, and L. Vozovoi, A new class of time discretization schemes for
the solution of nonlinear PDEs, J. Comput. Phys., 147 (1998), pp. 362--387.

D
ow

nl
oa

de
d 

05
/1

0/
22

 to
 1

58
.1

32
.1

61
.1

81
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

sIFRK METHOD AND UNCONDITIONAL PRESERVATION OF MBP A1801

[3] E. Burman and A. Ern, Stabilized Galerkin approximation of convection-diffusion-reaction
equations: Discrete maximum principle and convergence, Math. Comp., 74 (2005), pp.
1637--1652.

[4] W. B. Chen, C. Wang, X. M. Wang, and S. M. Wise, Positivity-preserving, energy stable
numerical schemes for the Cahn--Hilliard equation with logarithmic potential, J. Comput.
Phys. X, 3 (2019), 100031.

[5] P. G. Ciarlet, Discrete maximum principle for finite-difference operators, Aequationes Math.,
4 (1970), pp. 338--352.

[6] P. G. Ciarlet and P. A. Raviart, Maximum principle and uniform convergence for the finite
element method, Comput. Methods Appl. Mech. Engrg., 2 (1973), pp. 17--31.

[7] S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems, J. Comput.
Phys., 176 (2002), pp. 430--455.

[8] Q. Du, Nonlocal Modeling, Analysis, and Computation, CBMS-NSF Regional Conf. Ser. Appl.
Math. 94, SIAM, Philadelphia, PA, 2019.

[9] Q. Du, L. Ju, X. Li, and Z. H. Qiao, Maximum principle preserving exponential time differ-
encing schemes for the nonlocal Allen--Cahn Equation, SIAM J. Numer. Anal., 57 (2019),
pp. 875--898.

[10] Q. Du, L. Ju, X. Li, and Z. H. Qiao, Maximum bound principles for a class of semilinear
parabolic equations and exponential time differencing schemes, SIAM Rev., 63 (2021), pp.
317--359.

[11] Q. Du, L. Ju, and J. F. Lu, Analysis of fully discrete approximations for dissipative systems
and application to time-dependent nonlocal diffusion problems, J. Sci. Comput., 78 (2019),
pp. 1438--1466.

[12] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,
Grad. Texts in Math. 194, Springer-Verlag, New York, 2000.

[13] L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI,
2000.

[14] L. C. Evans, H. M. Soner, and P. E. Souganidis, Phase transitions and generalized motion
by mean curvature, Comm. Pure Appl. Math., 45 (1992), pp. 1097--1123.

[15] X. L. Feng, T. Tang, and J. Yang, Stabilized Crank--Nicolson/Adams--Bashforth schemes for
phase field models, East Asian J. Appl. Math., 3 (2013), pp. 59--80.

[16] X. Fern\'andez-Real and X. Ros-Oton, Boundary regularity for the fractional heat equation,
Rev. R. Acad. Cienc. Exactas F\'{\i}s. Nat. Ser. A Math. RACSAM, 110 (2016), pp. 49--64.

[17] L. Ferracina and M. N. Spijker, Step-size restrictions for total-variation-boundedness in
general Runge--Kutta procedures, Appl. Numer. Math., 53 (2005), pp. 265--279.

[18] S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong stability-preserving high-order time dis-
cretization methods, SIAM Rev., 43 (2001), pp. 89--112.

[19] E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I. Non-
stiff Problems, 2nd ed., Springer Ser. Comput. Math. 8, Springer-Verlag, Berlin, 1993

[20] M. Hochbruck and A. Ostermann, Explicit exponential Runge--Kutta methods for semilinear
parabolic problems, SIAM J. Numer. Anal., 43 (2005), pp. 1069--1090.

[21] T. L. Hou and H. T. Leng, Numerical analysis of a stabilized Crank--Nicolson/Adams--
Bashforth finite difference scheme for Allen--Cahn equations, Appl. Math. Lett., 102
(2020), 106150.

[22] T. L. Hou, T. Tang, and J. Yang, Numerical analysis of fully discretized Crank--Nicolson
scheme for fractional-in-space Allen--Cahn equations, J. Sci. Comput., 72 (2017), pp. 1214--
1231.

[23] T. L. Hou, D. F. Xiu, and W. Z. Jiang, A new second-order maximum-principle preserving
finite difference scheme for Allen--Cahn equations with periodic boundary conditions, Appl.
Math. Lett., 104 (2020), 106265.

[24] W. Hundsdorfer and M. N. Spijker, Boundedness and strong stability of Runge--Kutta meth-
ods, Math. Comp., 80 (2011), pp. 863--886.

[25] L. Isherwood, Z. J. Grant, and S. Gottlieb, Strong stability-preserving integrating factor
Runge--Kutta methods, SIAM J. Numer. Anal., 56 (2018), pp. 3276--3307.

[26] L. Ju, X. Li, Z. H. Qiao, and J. Yang, Maximum bound principle preserving integrating factor
Runge--Kutta methods for semilinear parabolic equations, J. Comput. Phys., 439 (2021),
110405.

[27] L. Ju, X. Li, Z. H. Qiao, and H. Zhang, Energy stability and error estimates of exponential
time differencing schemes for the epitaxial growth model without slope selection, Math.
Comp., 87 (2018), pp. 1859--1885.

[28] L. Ju, J. Zhang, and Q. Du, Fast and accurate algorithms for simulating coarsening dynamics
of Cahn--Hilliard equations, Comput. Mater. Sci., 108 (2015), pp. 272--282.

D
ow

nl
oa

de
d 

05
/1

0/
22

 to
 1

58
.1

32
.1

61
.1

81
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1802 JINGWEI LI, XIAO LI, LILI JU, AND XINLONG FENG

[29] L. Ju, J. Zhang, L. Y. Zhu, and Q. Du, Fast explicit integration factor methods for semilinear
parabolic equations, J. Sci. Comput., 62 (2015), pp. 431--455.

[30] J. D. Lawson, Generalized Runge--Kutta processes for stable systems with large Lipschitz con-
stants, SIAM J. Numer. Anal., 4 (1967), pp. 372--380.

[31] X. F. Liu and Q. Nie, Compact integration factor methods for complex domains and adaptive
mesh refinement, J. Comput. Phys., 229 (2010), pp. 5692--5706.

[32] Q. Nie, F. Y. Wan, Y. T. Zhang, and X. F. Liu, Compact integration factor methods in high
spatial dimensions, J. Comput. Phys., 227 (2008), pp. 5238--5255.

[33] G. Peng, Z. M. Gao, and X. L. Feng, A stabilized extremum-preserving scheme for nonlinear
parabolic equation on polygonal meshes, Internats. J. Numer. Methods Fluids, 90 (2019),
pp. 340--356.

[34] G. Peng, Z. M. Gao, W. J. Yan, and X. L. Feng, A positivity-preserving nonlinear fi-
nite volume scheme for radionuclide transport calculations in geological radioactive waste
repository, Internat. J. Numer. Methods Heat Fluid Flow, 30 (2019), pp. 516--534.

[35] A. Ralston, Runge--Kutta method with minimum error bounds. Math. Comp., 16 (1962), pp.
431--437.

[36] W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill, New York, 1976.
[37] J. Shen, T. Tang, and J. Yang, On the maximum principle preserving schemes for the

generalized Allen--Cahn equation, Commun. Math. Sci., 14 (2016), pp. 1517--1534.
[38] J. Shen and X. F. Yang, Numerical approximations of Allen--Cahn and Cahn--Hilliard equa-

tions, Discrete Contin. Dyn. Syst., 28 (2010), pp. 1669--1691.
[39] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-

capturing schemes, J. Comput. Phys., 77 (1988), pp. 439--471.
[40] E. S\"uli and D. F. Mayers, An Introduction to Numerical Analysis, Cambridge University

Press, Cambridge, UK, 2003.
[41] T. Tang and J. Yang, Implicit-explicit scheme for the Allen--Cahn equation preserves the

maximum principle, J. Comput. Math., 34 (2016), pp. 471--481.
[42] R. S. Varga, On a discrete maximum principle, SIAM J. Numer. Anal., 3 (1966), pp. 355--359.
[43] X. F. Xiao, Z. H. Dai, and X. L. Feng, A positivity preserving characteristic finite element

method for solving the transport and convection-diffusion-reaction equations on general
surfaces, Comput. Phys. Commun., 247 (2020), 106941.

[44] X. F. Xiao, X. L. Feng, and Y. N. He, Numerical simulations for the chemotaxis models on
surfaces via a novel characteristic finite element method, Comput. Math. Appl., 78 (2019),
pp. 20--34.

[45] C. J. Xu and T. Tang, Stability analysis of large time-stepping methods for epitaxial growth
models, SIAM J. Numer. Anal., 44 (2006), pp. 1759--1779.

[46] X. F. Yang, Error analysis of stabilized semi-implicit method of Allen--Cahn equation. Discrete
Contin. Dyn. Syst. Ser. B, 11 (2009), pp. 1057--1070.

[47] L. Y. Zhu, L. Ju, and W. D. Zhao, Fast high-order compact exponential time differencing
Runge--Kutta methods for second-order semilinear parabolic equations, J. Sci. Comput., 67
(2016), pp. 1043--1065.

D
ow

nl
oa

de
d 

05
/1

0/
22

 to
 1

58
.1

32
.1

61
.1

81
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y


	Introduction
	Overview of the MBP
	Unconditionally MBP-preserving sIFRK methods
	sIFRK schemes and unconditional MBP preservation
	Convergence analysis and energy stability
	SSP-sIFRK schemes

	Examples of unconditionally MBP-preserving sIFRK method
	First-order sIFRK scheme
	Second-order sIFRK schemes
	Third-order sIFRK schemes

	Numerical experiments
	Convergence tests
	MBP preservation
	3D simulations

	Conclusion
	References

