Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/89929
PIRA download icon_1.1View/Download Full Text
Title: Optimal design of transit networks fed by shared bikes
Authors: Wu, L 
Gu, W 
Fan, W 
Cassidy, MJ
Issue Date: Jan-2020
Source: Transportation research. Part B, Methodological, Jan. 2020, v. 131, p. 63-83
Abstract: Transit systems are designed in which access and egress can occur via a shared-bike service. Patrons may walk to shared-bike docking stations nearest their origins, and then cycle to their nearest transit stations where they deposit the bikes. The travel pattern is reversed when patrons cycle from their final transit stations on to their destinations. Patrons choose between this option and that of solely walking to or from transit stations. Shared bikes are priced to achieve the system-optimal assignment of the two feeder options.
Transit trunk-line networks are laid-out in hybrid fashion, as proposed in Daganzo (2010). Transit lines thus form square grids inside city centers, and radiate outward in the peripheries. As in Daganzo (2010) and other studies, a set of simplifying assumptions are adopted that pertain primarily to the nature of travel demand. These enable the formulation of a parsimonious, continuous model. The model produces designs that minimize total travel costs, and is ideally suited for high-level (i.e., strategic) planning. A similar model is developed for systems in which access or egress to or from transit can occur solely by walking, or by walking and riding fixed-route feeder buses in combination. The shared-bike and feeder-bus models both complement Daganzo's original model in which access and egress occur solely by walking.
Comparisons of these feeder options are drawn through numerical analyses. These are performed in parametric fashion by varying city size, travel demand, and economic conditions; and for trunk services that are provided either by ordinary buses, Bus Rapid Transit, or metro rail. Designs are produced for cases in which shared-bike and feeder-bus services are made to fit pre-existing and unchangeable trunk-line networks; and for cases in which trunk and feeder services are optimized jointly.
Outcomes reveal that shared-bike feeder systems can often reduce costs over walking alone, with cost savings as high as 7%, even when the shared bikes are made to fit a pre-existing transit network. Shared-biking often outperforms feeder-bus service as well. We further find that the joint optimization of trunk and shared-bike feeder services can reduce costs not only to users, but also to the transit agency that operates these services. Savings to the agency can be used to subsidize shared-bike services. We show that with or without this subsidy, shared-bike systems can always break even when they are suitably priced, and jointly optimized with trunk service.
Keywords: Bike sharing
Continuous models
Joint optimization
System optimal pricing
Transit network design
Publisher: Pergamon Press
Journal: Transportation research. Part B, Methodological 
ISSN: 0191-2615
EISSN: 1879-2367
DOI: 10.1016/j.trb.2019.11.003
Rights: © 2019 Elsevier Ltd. All rights reserved.
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.
The following publication Wu, L., Gu, W., Fan, W., & Cassidy, M. J. (2020). Optimal design of transit networks fed by shared bikes. Transportation Research Part B: Methodological, 131, 63-83 is available at https://dx.doi.org/10.1016/j.trb.2019.11.003.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Wu_Optima_Design_Transit.pdfPre-Published version2.1 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

60
Last Week
0
Last month
Citations as of Apr 28, 2024

Downloads

74
Citations as of Apr 28, 2024

SCOPUSTM   
Citations

43
Citations as of Apr 26, 2024

WEB OF SCIENCETM
Citations

39
Citations as of May 2, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.