Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/80797
Title: Applying GMDH neural network to estimate the thermal resistance and thermal conductivity of pulsating heat pipes
Authors: Ahmadi, MH
Sadeghzadeh, M
Raffiee, AH
Chau, KW 
Keywords: Pulsating heat pipe
Thermal resistance
Effective thermal conductivity
GMDH
Issue Date: 2019
Publisher: Taylor & Francis
Source: Engineering applications of computational fluid mechanics, 1 Jan. 2019, v. 13, no. 1, p. 327-336 How to cite?
Journal: Engineering applications of computational fluid mechanics 
Abstract: Thermal performance of pulsating heat pipes (PHPs) is dependent to several factors. Inner and outer diameter of tube, filling ratio, thermal conductivity, heat input, inclination angle, and length of each section are the most influential factors in the design process of PHPs. Since water is a conventional working fluid for PHPs, thermal resistance and effective thermal conductivity of PHPs filled with water are modeled by applying a GMDH (group method of data handling) neural network. The input data of the GMDH model are collected from other experimental investigations to predict the physical properties including thermal resistance and effective thermal conductivity of PHPs filled with water as working fluid. The accuracy of the introduced models are examined through the R-2 tests and resulted in 0.9779 and 0.9906 for thermal resistance and effective thermal conductivity, respectively.
URI: http://hdl.handle.net/10397/80797
ISSN: 1994-2060
EISSN: 1997-003X
DOI: 10.1080/19942060.2019.1582109
Rights: © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The following publication Mohammad Hossein Ahmadi, Milad Sadeghzadeh, Amir Hossein Raffiee &Kwok-wing Chau (2019) Applying GMDH neural network to estimate the thermal resistance andthermal conductivity of pulsating heat pipes, Engineering Applications of Computational FluidMechanics, 13:1, 327-336 is available at https://dx.doi.org/10.1080/19942060.2019.1582109
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Ahmadi_Neural_Ahmadi_GMDH.pdf1.67 MBAdobe PDFView/Open
Access
View full-text via PolyU eLinks SFX Query
Show full item record
PIRA download icon_1.1View/Download Contents

SCOPUSTM   
Citations

13
Citations as of May 15, 2020

WEB OF SCIENCETM
Citations

11
Citations as of May 27, 2020

Page view(s)

138
Citations as of May 6, 2020

Download(s)

109
Citations as of May 6, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.