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ABSTRACT
Thermal performance of pulsating heat pipes (PHPs) is dependent to several factors. Inner and outer
diameter of tube, filling ratio, thermal conductivity, heat input, inclination angle, and length of each
section are the most influential factors in the design process of PHPs. Since water is a conventional
working fluid for PHPs, thermal resistance andeffective thermal conductivity of PHPs filledwithwater
aremodeledby applying aGMDH (groupmethodof data handling) neural network. The input data of
the GMDHmodel are collected from other experimental investigations to predict the physical prop-
erties including thermal resistance and effective thermal conductivity of PHPs filled with water as
working fluid. The accuracy of the introducedmodels are examined through theR2 tests and resulted
in 0.9779 and 0.9906 for thermal resistance and effective thermal conductivity, respectively.
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1. Introduction

Reduction in the size of various devices makes it neces-
sary to have more effective cooling methods. One effi-
cient cooling device is the heat pipe. Heat pipes are
passive cooling devices consisting of a tube and par-
tially filled with working fluid (Faghri, 1995). Two-phase
heat transfer is the main reason for higher heat trans-
fer effectiveness in pulsating heat pipes (PHPs) (Buf-
fone, Sefiane, Buffone, & Lin, 2005). The working fluid
in heat pipes receives heat in the evaporator section
and evaporates, and returns to its liquid condition by
heat dissipation in the condenser section. In addition
to the evaporator and condenser, an optional adiabatic
section exists in heat pipes when there is gap between
the heat source and heat sink. Heat pipes’ characteristics
such as high heat transfer capacity make them a good
choice for use in several thermal systems (Motahar &
Khodabandeh, 2016).

Several classes of heat pipes have been introduced
so far, such as wick, rotating, and pulsating heat pipes
(Alizadeh et al., 2018; Ramezanizadeh et al., n.d.). The
fluid exchange between the condenser and the evaporator
is caused by the capillary force in the wick type. Rotating
heat pipes use centrifugal force for this purpose. Pressure
instabilities move the fluid in PHPs; in addition, gravity
helps fluidmotionwhere the evaporator section is located
at the bottom.
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PHPs can be built more compact than other classes of
heat pipes (Alhuyi Nazari, Ghasempour, Ahmadi, Hey-
darian, & Shafii, 2018). PHPs are formed of a capil-
lary tube. This tube is bent in various arrangements as
shown in Figure 1 (Gandomkar, Saidi, Shafii, Vandadi, &
Kalan, 2017; Mohammadi, Mohammadi, & Shafii, 2012).
PHPs can be used for different applicationd such as elec-
tronic device cooling, water heating systems, desalina-
tion systems, heat transfer improvement in phase change
material (PCM), and renewable energy (Alhuyi Nazari,
Ahmadi, Ghasempour, & Shafii, 2018). Thermal perfor-
mance of PHPs is influenced by several design variables
including heat input, geometry, material of tube, incli-
nation angle, inner and outer diameter, working fluid,
etc. (Zamani, Kalan, & Shafii, 2018). Increase in the
heat input, before dry-out, results in a higher rate of
fluid vaporization, which means an increase in boiling
heat transfer. Geometries with the ability to facilitate
fluid motion are more favorable. Connecting the chan-
nels and utilizing pipes with various sizes are among
the suggestions to achieve better fluid circulation inside
PHPs (Ebrahimi, Shafii, & Bijarchi, 2015). In addition,
higher thermal conductivity of PHP wall leads to bet-
ter heat transfer in both radial and axial heat trans-
fer. The influence of inclination angle is attributed to
its impact on the gravitational force that affects the
fluid flow.
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Figure 1. Schematic of a PHP (Daimaru, Yoshida, & Nagai, 2017).

System identification approaches have the ability to
estimate and forecast the performances of compound
devices on the basis of specified input–output (Faizol-
lahzadeh Ardabili et al., 2018; Moazenzadeh, Moham-
madi, Shamshirband, & Chau, 2018; Ramezanizadeh,
Ahmadi, Ahmadi, & Alhuyi Nazari, 2018). Various cal-
culation methods have been applied for this purpose
including fuzzy logic, neural network (NN), and evolu-
tionary algorithms (Baghban, Jalali, Shafiee, Ahmadi, &
Chau, 2019; Wu & Chau, 2011). By applying these meth-
ods, it is possible to improve understanding and issues in
complex and non-linear systems.

Several methods and algorithms have been used to
recognize systems’ behavior and estimate their perfor-
mance (Hemmat Esfe, Tatar, Ahangar, & Rostamian,
2018; Taormina, Chau, & Sivakumar, 2015; Yaseen,
Sulaiman, Deo, &Chau, 2019). A novel analysis approach
that ismultivariate is GMDH (groupmethod of data han-
dling), which was introduced by Ivakhnenko (Ahmadi,
Ahmadi, Mehrpooya, & Rosen, 2015) in order to model
complicated systems. GMDH is applied to avoid the dif-
ficulty of obtaining data when using the mathematical
method of evolution. Hence, by applying GMDH it is
possible to demonstrate complex systems when some of
the systems’ specifications are not given.

GMDH produces an analytical function in a feed-
forward network based on a quadratic node transfer
function (Rezaei, Sadeghzadeh, Alhuyi Nazari, Ahmadi,
& Astaraei, 2018). In this function, the constraints are
acquired by a regression procedure. The use of self-
organizing networks results in higher effectiveness of the
GMDH method for several applications (Rezaei et al.,
2018).

Since the performance of PHPs depends on different
factors, it is very complicated to evaluate the impact of
each factor by means of experimental studies. Moreover,
due to the chaotic behavior of PHPs, numerical model-
ing of them using computational fluid dynamic is very
difficult. Due to the facts mentioned, a comprehensive

approach must be used to accurately predict the ther-
mal performance of PHPs and consider all the factors
influencing their heat transfer. The use of artificial neu-
ral network (ANN) to estimate the thermal resistance of
PHPs by consideration of different factors is introduced
as a novel idea. In this study, a model is proposed incor-
porating results of experimental studies on PHPs and the
GMDHmethod. The obtained results are verified against
actual data that are obtained experimentally. In order to
consider all of the factors, 315 data are extracted from
various studies (Cui, Zhu, Li, & Shun, 2014; Jia, Jia, &Tan,
2013; Li & Yan, 2008; Lin, Kang, & Chen, 2008; Mameli,
Manno, Filippeschi, &Marengo, 2014; Qu&Wang, 2013;
Saha, Das, & Sharma, 2014; Shafii, Arabnejad, Saboohi, &
Jamshidi, 2010; Wang, Lin, Zhang, Chen, & Tang, 2009;
Wang, Ma, Zhu, Dong, & Yue, 2016; Zhao, Zhao, & Ma,
2013; Zhu, Cui, Han, & Sun, 2014). The polynomial NN
and the resulted estimations are trained by the gathered
data. Themodel inputs are inner and outer diameter, tube
thermal conductivity, turns, lengths of different sections
(adiabatic, evaporator, and condenser), heat input, filling
ration, and sine of inclination angle while the physical
features of thermal resistance and effective thermal con-
ductivity are defined as the outputs of the model. Since
one of the most applicable working fluids in PHPs is
water, which has shown appropriate heat transfer ability
in PHPs, all the investigated heat pipes work with water
as working fluid. A GMDH-style NN is applied in order
to determine the relationship between inputs and outputs
based on polynomials. This NN evolutionary algorithm
needs optimization methods in order to define the best
topology for the network. So the genetic algorithm is
employed to determine the topology in an innovative
procedure, i.e. the number of neurons in the hidden
layers and their specific linking arrangements. Singular
value decomposition (SVD) is utilized to obtain the opti-
mal values of the constants in the equations applied for
modeling thermal resistance and thermal conductivity
(Ahmadi et al., 2015).

2. GMDH principles

The underlying principle behind GMDH can be readily
described as the association of various pairs throughout
every layer by means of quadratic polynomials using the
GMDH algorithm, and thereby the generation of new-
born neurons for the subsequent layer. These valuable
findings have this potential to be employed to tie inputs
to outputs in modeling. Although there are a number of
definition for the recognition issue, the accepted one is to
specify an f̂ function, which is the approximate estima-
tion of the actual function of f for a close prediction of
ŷ to y for the specific input X = (x1, x2, x3, . . . , xn). For a
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number ofM observations the actual output is (Ahmadi
et al., 2015):

yi = f (xi1, xi2, xi3, . . . , xin) (i = 1, 2, 3, . . . ,M) (1)

A GMDH NN can now be used to predict the tar-
get values f̂i for any particular input vector X =
(xi1, xi2, xi3, . . . ., xin) as:

ŷi = f̂ (xi1, xi2, xi3, . . . , xin)(i = 1, 2, 3, . . . ,M) (2)

Then, we need to specify aGMDHNN to obtain themin-
imum square difference values of the real targets and the
determined ones:

M∑
i=1

[f̂ (xi1, xi2, xi3, . . . , xin) − ŷi]2 → min (3)

A discrete practice of the Volterra functional (Farlow
& Farlow, 1984; Ivakhnenko, 1971; Nariman-Zadeh,
Darvizeh, Felezi, &Gharababaei, 2002) series can be used
to constitute the general equation to obtain the output
directly through inputs as follows (Ahmadi et al., 2015):

y = a0 +
n∑

i=1
aixi +

n∑
i=1

n∑
j=1

aijxixj

+
n∑

i=1

n∑
j=1

n∑
k=1

aijkxixjxk + . . . (4)

Equation (4) is identified as he Kolmogorov–Gabor poly-
nomial. A complex of partial quadratic polynomials con-
sisting of two factors (neurons) can represent this full
algebraic arrangement, i.e.:

ŷ = G(xi, xj) = a0 + a1xi + a2xj + a3x2i + a4x2j

+ a5xixj (5)

In this respect, a partial quadratic layout is applied in
a reverse sequence in every part of a linked-neurons
network in order to assemble the overall correlation of
input–output which is described in Equation (4). Regres-
sion approaches are utilized to specify the coefficients
ai in Equation (5) for each set of inputs xi and xj, with
the intention of making the real output y close to the
forecasted ŷ (Ahmadi et al., 2015).

It can be perceived that employing the quadratic form
presented in Equation (5) results in a hierarchy of poly-
nomials. The constants of the polynomials are obtained
through a least-squares approach. Next, the Gi constants
are acquired with the aim of optimally fitting the outputs,

as follows, for the total set of input–output (Ahmadi et al.,
2015):

E =
∑M

i (yi − Gi)
2

M
→ min

In the GMDH approach, two independent factors from
the total n input are chosen to provide the probabilities.
In fact, this is accomplished by developing the regres-
sion polynomial in Equation (5), which closely follows
the observations (yi, i = 1, 2, ..,M) by a least-squares
method.

The number of
(
n
2

)
= n(n−2)

2 neurons are gathered

from themajor hidden layer of the feed forwardNN from
the M observations {(yi, xip, xiq); (i = 1, 2, . . .M)} for a
variety of p, q ∈ {1, 2, . . . , n} which are now favorable
to form triple data sets of {(yi, xip, xiq); (i = 1, 2, . . .M)}
from observations using p, q ∈ {1, 2, . . . , n} sets (Ahmadi
et al., 2015): ⎡⎣x1p x1q y1

x2p x2q y2
x3p x3q ym

⎤⎦
The succeeding matrix can be immediately obtained by
applying the quadratic sub-formulation type of Equation
(5) for every row ofM triple data sets:

Aa = Y (6)

a = {a0, a1, a2, a3, a4, a5} (7)

Y = {y1, y2, y3, . . . , yM}T (8)

where a represents the vector of unknown constants for
the quadratic polynomial in Equation (5), and Y is the
output. Hence, it is shaped as follows:⎡⎢⎢⎢⎣

1 x1p x1q x1px1q x21p x21q
1 x2p x2q x2px2q x22p x22q

. . . . . . . . . . . . . . . . . .

1 xMp xMq xMpxMq x2Mp x2Mq

⎤⎥⎥⎥⎦ (9)

The following equation is a result of utilizing the
least-squares method from analyzing of the multiple-
regression influence:

a = (ATA)−1AT (10)

Equation (10) is used to obtain the optimal values of
used constants in Equation (5) for the total array of M
triple data sets. All of the neurons which are placed in
the next hidden layer are escorted by the connectivity
configuration of the NN. This procedure is repeated. The
obtained results are precisely accessible to enhance devi-
ations and, more notably, to intensify the uniqueness of
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above equations (Ali Ahmadi & Golshadi, 2012; Jamali,
Nariman-Zadeh, Darvizeh, Masoumi, &Hamrang, 2009;
Lin, Cheng, & Chau, 2006; Nariman-zadeh, Atashkari,
Jamali, Pilechi, & Yao, 2005).

The primary fundamentals of a GMDH NN are
topology determination and the Ali Ahmadi genetic
algorithm that is employed in the process of design-
ing the GMDH NNs. Since stochastic techniques have
been effectively applied and confirmed to be bet-
ter than typical gradient-based techniques in terms
of finding connected coefficients or weights of NNs,
they are commonly employed in the procedure of
training NNs.

Neurons of any layer, in most GMDH-style NNs, are
associated with a neuron in a nearby layer, as has pre-
viously been explained (Ali Ahmadi & Golshadi, 2012;
Nariman-zadeh, Atashkari, Jamali, Pilechi, & Yao, 2005).
This improvement results in the use of a straightforward
programing pattern, demonstrated in Figure 2, for each
genotype, as was earlier proposed (Nariman-zadeh et al.,
2005; Yao, 1999).

GMDH NNs (generalize the structure of group
method of data handling [GS-GMDH]) must be capable
of illustrating NNs of any length and size. As illustrated
in Figure 1, throughout a GS-GMDH NN, ad inside the
primary hidden layer is directly involved with the out-
put layer by covering the hidden layer of the next stage.
Therefore, it can be perceived that the output of abbcadad
consists of double ad. A cybernetic neuron of adad is
formed in the hidden layer of the next stage and used in
the same layer to assemble the output, as demonstrated
in the Figure 1 (Ahmadi et al., 2015).

The procedure is started when a neuron is delivered
to specified adjacent hidden layers and links to another
neuron in the subsequent hidden layer (second, or third,
or fourth, and so on). In this modeling pattern, the num-
ber of repetitions is 2ñ, where ñ indicates the number of
hidden layers. It should be noted that the chromosomes
of ababbcbc and ababacbc are different, and thereby it is
not a separate function in the GS-GMDH networks and
has to be directly revised as abbc.

Figure 2. Network structure of chromosomes in GMDH (Ahmadi
et al., 2015).

Applying the GA mutation and crossover operatives
makes it possible to create two children from a father and
amother. In this regard, to find out the parents of the two
children, an ordinary roulette wheel selection technique
is utilized (Nariman-zadeh et al., 2005; Yao, 1999).

Every network is monitored by a prolonged string
in order to form the GMDH NNs. To characterize a
GMDH-style NN approach, the fitness (ϕ) of each string
is calculated as follows:

φ = 1
E

(11)

where E denotes the mean square error (MSE) in
Equation (10), which is minimized by using the fitness
factor of ϕ in the evolutionary algorithm.

The evolutionary algorithm is commenced by select-
ing an arbitrary values from the population. Next, muta-
tion, crossover, and roulette wheel, the genetic opera-
tors, are applied on the whole population of illustrative
series to gradually improve the solution. GMDH NN
techniques with dramatically increasing fitness factor are
developed until the progress comes to an acceptable level.

The precision of the presented polynomial models are
assessed and evaluated through several methods such
as correlation of determination (R2), and root mean
square error (RMSE), and mean absolute percentage of
error (MAPE) (Bildirici & Ersin, 2014; Elçiçek, Akdoğan,
& Karagöz, 2014; Gonzalez-Sanchez, Frausto-Solis, &
Ojeda-Bustamante, 2014):

R2 = 1 −
[∑M

i=0 (Yi(model) − Yi(actual))
2∑M

i=1 (Yi(actual))
2

]
(12)

RMSE =
[∑M

i=0 (Yi(model) − Yi(actual))
2

M

] 1
2

(13)

MAPE =
[∑M

i=0 |Yi(model) − Yi(actual)|
M

∑M
i=1 Yi(actual)

]
(14)

3. Results and discussion

In this study, the thermal resistance and thermal con-
ductivity of PHPs filled with water as working fluid are
determined by applying a GMDHmethod. Various effec-
tive parameters’ effect on thermal resistance and thermal
performance are considered. The parameters are inner
and outer diameter of tube, number of turns, lengths of
evaporator, condenser, and adiabatic sections, thermal
conductivity of tube material, inclination angle of PHP,
filling ratio, and heat input. In order to calculate the effec-
tive thermal conductivity of the PHP, Equations (15) and
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(16) are applied.

leff = lad + 1/2(le + lc) (15)

Keff = leff /R.APHP (16)

Data are extracted from several studies in order to rep-
resent a comprehensive model that is applicable for
various working conditions. Based on the approach
described, the polynomials generated for thermal resis-
tance (Equation [17]) and effective thermal conductivity
(Equation [18]) are as follows:

thermal resistance = 1.3793 − di ∗ 1.86534 + di2∗
0.584331 + N2 ∗ 1.026 − N22 ∗ 0.00145972

N2 = −0.0153625 + N668 ∗ 0.0602603 + N4∗
0.942843 + N42 ∗ 0.00250313

N4 = −0.206913 + N938 ∗ 0.353221 + N938 ∗ N13∗
0.0146303 − N9382 ∗ 0.0942794 + N13 ∗ 0.960321

N13 = 0.0136544 − N382 ∗ 0.25184 + N3822∗
0.00114117 + N18 ∗ 1.23753

N18 = −0.0031026 + N61 ∗ 0.264179 − N61 ∗ N63∗
0.695382 + N612 ∗ 0.384159 + N63 ∗ 0.729397

+N632 ∗ 0.311604

N63 = 0.0437684 − N475 ∗ 0.564158 + N475 ∗ N108∗
1.51567 − N4752 ∗ 0.698669 + N108 ∗ 1.55382

−N1082 ∗ 0.814698

N108 = −0.0267701 + N142 ∗ 0.441903 − N142∗
N195 ∗ 2.14596 + N1422 ∗ 1.09139 + N195∗
0.538925 + N1952 ∗ 1.05613

N195 = −0.0674541 − N762 ∗ 0.151637 − N762∗
N455 ∗ 0.241551 + N7622 ∗ 0.140852 + N455∗
1.23267 + N4552 ∗ 0.0661478

N455 = −0.0452748 + N512 ∗ 0.592131 − N512∗
N954 ∗ 0.0309739 + N5122 ∗ 0.0574798

+N954 ∗ 0.30691

N954 = 5.00243 − N998 ∗ 1.81918 + N998 ∗ N1001∗
3.15769 − N998 ∧ 2 ∗ 0.267178 − N1001∗
5.61491 + N10012 ∗ 0.475315

N1001 = −4232.38 + filling ratio ∗ 62821.7

−filling ratio ∗ filling ratio ∗ 28299.4

+filling ratio2 ∗ 2641.85 + filling ratio∗

25272.5 − filling ratio2 ∗ 58203.9

N998 = −9.02357 + lc ∗ 1.93546 − lc ∗ angle∗
2.22982 − lc2 ∗ 0.0646227 + angle ∗ 12.8099

−angle2 ∗ 0.176741

N762 = 2.19892 − N949 ∗ 5.12281 − N949∗
N999 ∗ 2.24318 + N9492 ∗ 2.55658 + N999∗
4.25731 − N9992 ∗ 0.9546

N999 = 2.91766 − lc ∗ 0.0293039

+lc2 ∗ 7.42086e − 05

N949 = 8.24353 + la ∗ 3.67117 − la ∗ do ∗ 1.49715

−la2 ∗ 0.186397 − do ∗ 21.8758 + do2 ∗ 10.2176

N142 = −0.0488954 + N257 ∗ 0.595073 − N257∗
N501 ∗ 0.852779 + N2572 ∗ 0.494999 + N501∗
0.401075 + N5012 ∗ 0.35959

N501 = −0.122995 + N526 ∗ 0.594386 − N526∗
N606 ∗ 1.3906 + N5262 ∗ 0.84123 + N606∗
0.452032 + N6062 ∗ 0.501207

N606 = 0.465024 − N786 ∗ 0.283021 + N786∗
N830 ∗ 0.493308 − N830 ∗ 0.145692 + N8302∗
0.0898273

N830 = 4.29728 + la ∗ 2.09115 + la ∗ q ∗ 0.297407

−la2 ∗ 0.377062 − q ∗ 2.88556 + q2 ∗ 0.0749262

N786 = 8.51401 + lc ∗ 0.162478 − lc ∗ turn∗
0.19287 + lc2 ∗ 0.00149821 − turn ∗ 12.7218

+turn2 ∗ 6.37126

N526 = 0.415903 − N637 ∗ 0.29853 + N637∗
N952 ∗ 0.345626 + N6372 ∗ 0.137537

−N952 ∗ 0.348617 + N9522 ∗ 0.212929

N952 = −81.4928 − le ∗ 0.126059 + le2 ∗ 0.00162688

+lc ∗ 48.2396 − lc2 ∗ 6.74378

N637 = 1.54277 − do ∗ q ∗ 0.575434 + do2∗
0.265486 + q ∗ 0.728609 + q2 ∗ 0.0382402

N257 = 0.0202435 + N509 ∗ 0.567101 − N509∗
N648 ∗ 0.202378 + N5092 ∗ 0.135832 + N648∗
0.374981 + N6482 ∗ 0.0479461

N648 = −0.163185 + N847 ∗ 2.01553 − N847∗
N930 ∗ 14.1819 + N8472 ∗ 7.59523 − N930∗
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0.389653 + N9302 ∗ 5.86296

N930 = 22.0596 − lc ∗ 0.0344342 + lc ∗ do∗
0.0100074 + lc2 ∗ 5.55762e − 05 − do ∗ 28.6736

+do2 ∗ 10.2169

N847 = 1.44171 − turn ∗ 0.527986 − turn ∗ le∗
0.00716259 + turn2 ∗ 0.0435464 + le ∗ 0.0822812

−le2 ∗ 0.000406114

N475 = 0.0783022 + N512 ∗ 0.53378 + N5122∗
0.0862172 + N622 ∗ 0.406139 − N6222 ∗ 0.101118

N622 = 0.432176 − N774 ∗ 0.768196 + N774∗
N972 ∗ 0.548759 + N7742 ∗ 0.191911 − N972∗
1.05666 + N9722 ∗ 0.699157

N774 = 0.248366 − do ∗ q ∗ 0.0185382 + do2∗
0.141916 + q ∗ 0.0442287 + q2 ∗ 8.0383e − 07 (17)

effective thermal conductivity = −13.7736 + N144∗
0.538576 + N184 ∗ 0.464164

N184 = −2092.48 + N353 ∗ 0.963642 + N353∗
N817 ∗ 1.63544e − 06 + N817 ∗ 0.921357 − N8172∗
3.44551e − 05

N817 = 2086.93 + N878 ∗ N886 ∗ 0.000144386

−N8782 ∗ 4.3916e − 05 + N886∗
0.0929333 − N8862 ∗ 1.61099e − 05

N886 = 155103 + material ∗ 41238.5 + material ∗ di∗
180.414 − material2 ∗ 107.607 − di ∗ 149067

+di2 ∗ 19873.4

N878 = 84504.5 − material ∗ 59.5247 + material∗
la ∗ 13.113 + material2 ∗ 0.0171151

−la ∗ 39696.3 + la2 ∗ 4618.96

N353 = −1743.35 + N517 ∗ 0.722103 + N517∗
N745 ∗ 1.11633e − 05 + N745 ∗ 1.04832

−N7452 ∗ 3.97024e − 05

N745 = 5634.79 + lc ∗ 226.504 − lc ∗ do ∗ 42.7616

+lc2 ∗ 0.0752415 − do ∗ 5161.38 + do2 ∗ 764.177

N517 = −906.348 + angle ∗ 2193.7 − q ∗ 982.231

+q2 ∗ 380.579

N144 = 19.6363 + N374 ∗ 0.760643 + N374 ∗ N624∗

6.79657e − 06 + N624 ∗ 0.197119 − N6242∗
4.11343e − 06

N624 = −930.965 − N879 ∗ 0.135998 − N879∗
N895 ∗ 0.00088553 + N8792 ∗ 0.000417206

+N895 ∗ 0.325276 + N8952 ∗ 0.000461109

N895 = 67435.2 − angle ∗ 16125.1 + angle ∗ do∗
5890.05 − angle2 ∗ 13706 − do ∗ 21768

+do2 ∗ 1623.75

N879 = 738867 + do ∗ 83303.9 − do ∗ di ∗ 43941.9

−do2 ∗ 3766.63 − di ∗ 1.3808e + 06 + di2 ∗ 600114

N374 = −1452.64 + N520 ∗ 0.658643 + N520∗
N724 ∗ 1.49637e − 05 + N724 ∗ 1.00848 − N7242∗
4.03562e − 05

N724 = −2.05598e + 06 + turn ∗ 2.93641e + 06

−turn ∗ turn ∗ 568528 + turn2 ∗ 8873.03 + turn∗
5.80685e + 06 − turn2 ∗ 6.12671e + 06

N520 = −1082.7 + q ∗ 20.3081 + q ∗ 799.277 (18)

Input and output parameters are as follows:

Filling ratio: filling ratio
Material: thermal conductivity of tube
Turn: number of turns
le: length of evaporator section
lc: length of condenser section
la: length of adiabatic section
Angle: sinus of inclination angle
di: inner diameter
do: outer diameter
q: heat input
R: thermal resistance of heat pipe
K: thermal conductivity of heat pipe

As shown in Figure 3, the average relative deviation
(ARD) of the thermal resistance is in an appropriate
range. Relative deviation decreases with increasing ther-
mal resistance, which can be attributed tomore dominant
conduction heat transfer in comparison with two-phase
heat transfer for high thermal resistances. The relative
deviation of the applied technique for calculating ther-
mal resistance in comparison with the experimental data
is shown in Figure 2. Based on the results obtained,
the maximum relative error is approximately 35.8% and
reaches less than 5% for thermal resistances higher than
10 K/W.
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Figure 3. Relative error of thermal resistance versus experimen-
tal data.

Figure 4. GMDH output versus actual data: thermal resistance.

Figure 4 shows data obtained by applying a GMDH
model and compares them with actual data based on the
data index. Results indicated good agreement between
model output and experimental data.

In Figure 5, the estimations obtained are compared
with the actual measured data. Based on the Figure 5, the
estimated data and experimental measurements have an
acceptable closeness.

In Figure 6, the relative deviation for the GMDH
model applied for effective thermal conductivity is
represented. As shown in Figure 6, ARD decreases and

Figure 5. GMDH estimation versus actual data of thermal
resistance.

Figure 6. Relative error of effective thermal conductivity versus
experimental data.

reaches zero for effective thermal conductivity higher
than 10,000 W/K.m.

Results obtained from the model for effective ther-
mal conductivity are compared with experimental data
in Figure 7. As shown, there is good agreement between
experimental data and data obtained from the model.
The model is more suitable at higher effective thermal
conductivity.

Figure 7. GMDH estimation versus actual data of effective ther-
mal conductivity.

Figure 8. GMDH output versus actual data of effective thermal
conductivity on the basis of the data index.
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Results of the GMDH technique employed are shown
in Figure 8 in order to evaluate the effective thermal
conductivity of PHPs based on their data index.

4. Conclusion

A novel method to determine the thermal resistance and
effective thermal conductivity of PHPs filled with water
as working fluid has been presented. The technique uti-
lizes GMDH in order to obtain an applicable route for
calculating the thermal resistance and effective thermal
conductivity of PHPs. Accurate experimental data are
extracted from valid studies. Results indicate that the
GMDH method is an appropriate tool for predicting
heat transfer characteristics of PHPs with low degree of
uncertainty.

Since GMDH shows a favorable performance in esti-
mating PHPs’ thermal behavior, other ANN-based mod-
els with various algorithms can be tested to evaluate
their performance. Moreover, different machine learn-
ing approaches such as support vector machine-based
models can be evaluated in estimating the thermal per-
formance of PHPs. Coupling various optimization algo-
rithms with machine learning methods is another idea to
minimize the deviation of the models and achieve higher
accuracy. Finally, according to the acceptable precision
of the current model, this approach can be applied to
PHPs filled with various operating fluids such as ethanol,
acetone, etc.

Nomenclature

la length of adiabatic section
lc length of condenser section
le length of evaporator section
leff effective length
di inner diameter
do outer diameter
K thermal conductivity of heat pipe
q heat input
R thermal resistance of heat pipe
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