Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/78275
PIRA download icon_1.1View/Download Full Text
Title: An automatic method for screening clouds and cloud shadows in optical satellite image time series in cloudy regions
Authors: Zhu, XL 
Helmer, EH
Issue Date: 1-Sep-2018
Source: Remote sensing of environment, 1 Sept. 2018, v. 214, p. 135-153
Abstract: Clouds and cloud shadows block land surface information in optical satellite images. Accurate detection of clouds and cloud shadows can help exclude these contaminated pixels in further applications. Existing cloud screening methods are challenged by cloudy regions where most of satellite images are contaminated by clouds. To solve this problem for landscapes where the typical frequency of cloud-free observations of a pixel is too small to use existing methods to mask clouds and shadows, this study presents a new Automatic Time-Series Analysis (ATSA) method to screen clouds and cloud shadows in multi-temporal optical images. ATSA has five main steps: (1) calculate cloud and shadow indices to highlight cloud and cloud shadow information; (2) obtain initial cloud mask by unsupervised classifiers; (3) refine initial cloud mask by analyzing time series of a cloud index; (4) predict the potential shadow mask using geometric relationships; and (5) refine the potential shadow mask by analyzing time series of a shadow index. Compared with existing methods, ATSA needs fewer predefined parameters, does not require a thermal infrared band, and is more suitable for areas with persistent clouds. The performance of ATSA was tested with Landsat-8 OLI images, Landsat-4 MSS images, and Sentinel-2 images in three sites. The results were compared with a popular method, Function of Mask (Fmask), which has been adopted by USGS to produce Landsat cloud masks. These tests show that ATSA and Fmask can get comparable cloud and shadow masks in some of the tested images. However, ATSA can consistently obtain high accuracy in all images, while Fmask has large omission or commission errors in some images. The quantitative accuracy was assessed using manual cloud masks of 15 images. The average cloud producer's accuracy of these 15 images is as high as 0.959 and the average shadow producer's accuracy reaches 0.901. Given that it can be applied to old satellite sensors and it is capable for cloudy regions, ATSA is a valuable supplement to the existing cloud screening methods.
Keywords: Cloud detection
Cloud shadow
Mask
Optical satellite images
Time series
Publisher: Elsevier
Journal: Remote sensing of environment 
ISSN: 0034-4257
EISSN: 1879-0704
DOI: 10.1016/j.rse.2018.05.024
Rights: © 2018 Elsevier Inc. All rights reserved.
© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.
The following publication Zhu, X., & Helmer, E. H. (2018). An automatic method for screening clouds and cloud shadows in optical satellite image time series in cloudy regions. Remote Sensing of Environment, 214, 135-153 is available at https://dx.doi.org/10.1016/j.rse.2018.05.024.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Zhu_Automatic_Clouds_Satellite.pdfPre-Published version3.19 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

138
Last Week
1
Last month
Citations as of Apr 14, 2024

Downloads

71
Citations as of Apr 14, 2024

SCOPUSTM   
Citations

96
Citations as of Apr 12, 2024

WEB OF SCIENCETM
Citations

87
Last Week
0
Last month
Citations as of Apr 18, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.