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Abstract: Clouds and cloud shadows block land surface information in optical satellite images. 30 

Accurate detection of clouds and cloud shadows can help exclude these contaminated pixels in 31 

further applications. Existing cloud screening methods are challenged by cloudy regions where 32 

most of satellite images are contaminated by clouds. To solve this problem for landscapes where 33 

the typical frequency of cloud-free observations of a pixel is too small to use existing methods to 34 

mask clouds and shadows, this study presents a new Automatic Time-Series Analysis (ATSA) 35 

method to screen clouds and cloud shadows in multi-temporal optical images. ATSA has five main 36 

steps: (1) calculate cloud and shadow indices to highlight cloud and cloud shadow information; (2) 37 

obtain initial cloud mask by unsupervised classifiers; (3) refine initial cloud mask by analyzing 38 

time series of a cloud index; (4) predict the potential shadow mask using geometric relationships; 39 

and (5) refine the potential shadow mask by analyzing time series of a shadow index. Compared 40 

with existing methods, ATSA needs fewer predefined parameters, does not require a thermal 41 

infrared band, and is more suitable for areas with persistent clouds. The performance of ATSA was 42 

tested with Landsat-8 OLI images, Landsat-4 MSS images, and Sentinel-2 images in three sites. 43 

The results were compared with a popular method, Function of Mask (Fmask), which has been 44 

adopted by USGS to produce Landsat cloud masks. These tests show that ATSA and Fmask can 45 

get comparable cloud and shadow masks in some of the tested images. However, ATSA can 46 

consistently obtain high accuracy in all images, while Fmask has large omission or commission 47 

errors in some images. The quantitative accuracy was assessed using manual cloud masks of 15 48 

images. The average cloud producer’s accuracy of these 15 images is as high as 0.946 and the 49 

average shadow producer’s accuracy reaches 0.884. Given that it can be applied to old satellite 50 

sensors and it is capable for cloudy regions, ATSA is a valuable supplement to the existing cloud 51 

screening methods.  52 
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1. Introduction 55 

           Optical satellite images with bands ranging from visible to shortwave infrared are widely 56 

used for mapping land cover and land use, monitoring ecosystems, and estimating land surface 57 

parameters (Hansen and Loveland, 2012; Zhu and Liu, 2015, 2014). Unfortunately, optical satellite 58 

images are easily contaminated by clouds and cloud shadows. This contamination obscures land 59 

surface features and alters the reflectance of ground objects, reducing the availability of optical 60 

images for applications (Fisher, 2013; Zhu and Woodcock, 2014). Masking clouds and cloud 61 

shadows is often the first and a necessary step of image preprocessing in most optical remote 62 

sensing applications. Although manual digitization can obtain accurate cloud and shadow masks, 63 

it requires a lot of time and effort. Therefore, an automatic method for screening clouds and 64 

shadows is needed, especially when processing large numbers of images. 65 

           Automatic detection of clouds and cloud shadows is challenging (Zhu and Woodcock, 2014). 66 

First, different types of clouds have different spectral signatures and are easily confused with some 67 

cloud-free bright objects on the land surface, especially in images with limited spectral bands, such 68 

as Landsat Multispectral Scanner (MSS) images. The spectral signals of clouds are usually 69 

determined by cloud height, optical thickness, particle size, etc. (Platnick et al., 2003). As a result, 70 

cloud brightness ranges widely in visible and near infrared bands, and some clouds are easily 71 

confused with bright land surfaces, such as concrete surfaces, sand or snow. Second, blurry cloud 72 

edges and thin clouds partially obscure land surfaces, making their signal a mixture of cloud and 73 

land surface elements and making them difficult to separate from clear observations (Cahalan et 74 

al., 2001). Another challenge comes from cloud shadows. They are easily confused with dark land 75 

surfaces, such as moist soil, water bodies and topographic shadow (Fisher, 2013). 76 

          Despite the above challenges, several methods have been developed to automatically screen 77 
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clouds and cloud shadows in optical images. These methods use one or more of the following rules 78 

based on cloud and cloud shadow properties: 1) clouds are generally brighter than ground objects, 79 

so they have high reflectance in visible, near and shortwave infrared bands; 2) clouds are generally 80 

colder than most ground objects, so they have lower brightness in thermal infrared bands; 3) 81 

shadows are generally darker than surrounding land surfaces, so they have lower reflectance in 82 

visible, near and shortwave infrared bands; 4) shadows are paired with clouds, so cloud location 83 

and solar angles can help locate cloud shadows; and 5) in a sequence of images, pixels affected by 84 

clouds and shadows have larger temporal variations than clear observations in the time series. In 85 

general, existing methods for masking clouds and cloud shadows can be divided into two 86 

categories: single-image methods (Choi and Bindschadler, 2004; Fisher, 2013; Helmer et al., 2012; 87 

Huang et al., 2010; Hughes and Hayes, 2014; Irish et al., 2006; Li et al., 2015, 2017; Luo et al., 88 

2008; Martinuzzi et al., 2007; Roy et al., 2010; Scaramuzza et al., 2012; Wilson and Oreopoulos, 89 

2013; Zhu and Woodcock, 2012) and multi-temporal or bi-temporal methods (Goodwin et al., 2013; 90 

Hagolle et al., 2010; Jin et al., 2013; Wang et al., 1999; Zhu and Woodcock, 2014).  91 

           Most existing single-image methods use either predefined thresholds or adaptive thresholds 92 

to screen clouds in individual images. For example, Luo et al. (2008) identify clouds in MODIS 93 

images if pixel reflectance satisfies these predefined thresholds: (B1 > 0.18 or B3 > 0.20) and B6 > 94 

0.16 and Maximum (B1, B3) > B6×0.67, where B1, B3, and B6 are reflectance of MODIS bands 95 

1 (blue), 3 (red), and 6 (shortwave infrared), respectively. This MODIS cloud screening method 96 

was further adopted for Landsat-8 images (Wilson and Oreopoulos, 2013). Huang et al. (2010) use 97 

adaptive thresholds defined in the reflectance-temperature space to mask clouds in Landsat TM 98 

and ETM+ images. These adaptive thresholds are defined by the mean and standard deviation of 99 

pixel values of individual bands in the whole image. The Automatic cloud cover assessment 100 
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(ACCA) algorithm consists of twenty-six filters and rules applied to Landsat bands to detect clouds 101 

(Irish et al., 2006). ACCA was used to produce web-enable Landsat data (WELD), a consistent, 102 

long-term, and large-area data record (Roy et al., 2010). The multi-feature combined (MFC) 103 

method uses thresholds in spectral, geometric and texture features to detect clouds in GaoFen-1 104 

imagery (Li et al., 2017).  Zhu and Woodcock (2012) proposed a method called function of mask 105 

(Fmask) for detecting clouds in Landsat TM and ETM+ images. Fmask uses all Landsat image 106 

bands and several band indices, such as the normalized difference vegetation index (NDVI) and 107 

the normalized difference snow index (NDSI). It employs more than 20 predefined and adaptive 108 

thresholds to mask clouds. Besides the above methods using predefined or adaptive thresholds, 109 

machine-learning algorithms have been employed to model the complex relationships between 110 

image features and clouds using a training dataset. Then, the trained model is used to screen clouds 111 

in other images. These machine learning algorithms include decision trees (Scaramuzza et al., 112 

2012), neural networks (Hughes and Hayes, 2014) and support vector machines (Li et al., 2015). 113 

Of several tested cloud and shadow masking algorithms that use only a single image, Fmask is 114 

globally the most accurate one that requires a thermal band (Foga et al., 2017). Of methods not 115 

requiring a thermal band, a version of ACCA (Irish et al., 2006) that uses a simulated thermal band 116 

is better overall, but it is not as accurate as Fmask with the thermal band (Foga et al., 2017). 117 

Recently, Fmask was further improved for mountainous areas through integrating Digital 118 

Elevation Models (DEMs) into the detecting process (Qiu et al., 2017).  119 

        In these single-image methods, shadow detection is often subsequent to cloud detection. In 120 

general, the possible shadow locations can be calculated from the geometric relationship between 121 

sun, sensor, and clouds. The calculation requires cloud heights, which can be estimated with 122 

brightness temperature derived from thermal infrared bands, because temperature declines with 123 
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elevation (Qiu et al., 2017; Zhu and Woodcock, 2012). Some methods also use the fact that cloud 124 

shadows are dark to confirm whether the possible shadow location estimated from geometry is real 125 

cloud shadow, including Fmask (Zhu and Woodcock, 2012) and MFC (Li et al., 2017). In Fmask, 126 

predefined thresholds in the near infrared (NIR) band are used to produce a potential shadow mask, 127 

which is further compared to the possible shadow locations. If there is a high similarity between 128 

potential shadow masks and possible shadow locations, the shadow pixels are finally confirmed 129 

(Zhu and Woodcock, 2012).      130 

        For multi-temporal methods, temporal information in the images acquired at different times 131 

is used to detect clouds and shadows. Wang et al. (1999) used the brightness difference between a 132 

target image and a reference cloud-free image to detect clouds. Lyapustin et al. (2008) developed 133 

an algorithm, abbreviated as MAIAC CM, to detect clouds in time series of MODIS images. The 134 

general idea of MAIAC CM is to use the low covariance between reference cloud-free image 135 

blocks and cloudy image blocks as a criterion to identify clouds in the time series. Hagolle et al. 136 

(2010) computes differences in the blue band between a target image and a cloud-free reference 137 

image. It then flags cloud pixels if variations are larger than a threshold. Goodwin et al. (2013) 138 

uses filters to smooth the time-series and then identify clouds and shadows based on reflectance 139 

differences between each point in the time series and the smoothed time series. Zhu and Woodcock 140 

(2014) propose a new algorithm called multiTemporal mask (Tmask) to improve Fmask. Tmask 141 

fits a time series model of each pixel using remaining clear pixels based on an initial cloud mask 142 

from Fmask. Then, it compares model estimates with observations in the time series to detect cloud 143 

and shadow pixels which are omitted in the initial screening by Fmask. In general, these multi-144 

temporal methods are better at detecting clouds and cloud shadows than single-image methods. 145 

The temporal information is a valuable complement to the spectral information for differentiating 146 
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cloud, cloud shadow and clear observations over land surfaces (Goodwin et al., 2013; Zhu and 147 

Woodcock, 2014).  148 

        However, these multi-temporal methods still face challenges in areas with persistent cloud 149 

cover, such as tropical and subtropical regions (Ju and Roy, 2008). First, in these areas cloud-free 150 

observations may be the exception rather than the rule, making it difficult to know whether the fit 151 

of a time series represents clear or cloudy conditions, which limits the application of existing time-152 

series methods (Foga et al., 2017). Example limitations include the requirement by the MAIAC 153 

CM method of a cloud free image as a reference image (Lyapustin et al., 2008), and the 154 

recommendation for Tmask of 15 cloud-free observations for estimating the time series model 155 

(Zhu and Woodcock, 2014). Second, most existing methods were designed for images of a specific 156 

sensor, so they lack flexibility. For example, Fmask and Tmask were designed for Landsat TM, 157 

ETM+, and OLI images, so they cannot be directly applied to the old Landsat MSS data with 158 

limited bands. Third, most of the current methods use predefined fixed thresholds to detect clouds 159 

and shadows in an entire scene. For instance, in Tmask, a pixel with observed green band 160 

reflectance of 0.04 higher than the time series model estimation will be identified as cloud. 161 

Considering the complex situation of clouds and shadows and the diversity of objects on land 162 

surfaces and in coastal areas, these fixed thresholds may not always obtain satisfactory results.  163 

        To overcome the above limitations of existing methods in cloudy regions, the objective of 164 

this study is to develop a new automatic method for accurately screening clouds and cloud shadows 165 

in multi-temporal optical images in places with persistent clouds. Our scope of inference is 166 

landscapes where are so cloudy that the typical frequency of cloud-free observations of a pixel is 167 

too small to use existing methods to mask clouds and shadows with image time series. The new 168 

method should have the following strengths: 1) it needs fewer predefined parameters; 2) it is 169 
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suitable for areas with persistent clouds; and 3) it needs a minimal number of bands. Automatic 170 

Time-Series Analyses (ATSA) method was developed in this study and tested in three pilot sites 171 

using Landsat OLI and MSS images, and Sentinel-2 images. Its performance was compared with 172 

Fmask, a widely recognized method.    173 

2. Test Sites and Data 174 

 2.1. A cloudy urban site 175 

        Urban landscapes bring more challenges to automatic screening of clouds and shadows than 176 

other landscapes. The bright built-up area often leads to large commission errors in cloud detection. 177 

To test the effectiveness of the proposed method in such challenging cases, we selected Hong Kong, 178 

a cloudy subtropical dense city with complex and mixed land-cover types (Fig. 1). This site has an 179 

area of 1, 620 km2 (1200×1500 Landsat pixels), and the central coordinates are 22.367 ֯ N and 180 

114.123 ֯ E. It is covered by the Landsat scene of Worldwide Reference System 2 (WRS-2) Path 181 

122 Row 44. All 23 available Landsat-8 OLI level-1 images in 2015 were downloaded from USGS 182 

Earth Explorer. These images were then converted to Top of Atmosphere (TOA) reflectance with 183 

the scaling coefficients in the metadata file. The corresponding Fmask cloud masks of these images 184 

were also downloaded from USGS Earth Explorer.  Based on Fmask cloud masks, only two images 185 

are clear, while the other images have total cloud and shadow coverage ranging from 5.5% to 97%. 186 

Sixteen of them have total cloud and shadow coverage larger than 60%, indicating Landsat 187 

imagery in this site is seriously contaminated by clouds (Table 1). 188 

 189 
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 190 

Fig. 1. True color composition of a Landsat-8 image of 2015, DOY003 in Hong Kong  191 

 192 

 193 

 194 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

Table 1. Summary of cloud and shadow coverage of Landsat-8 images from the year 2015 over 203 

the Hong Kong site using Fmask product. Only two images have no clouds. 204 
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DOY Cloud coverage % Shadow coverage % Total cloud and shadow coverage% 

3 0.0 0.0 0.0 

19 0.0 0.0 0.0 

35 97 0.0 97 

51 65 3.8 69 

67 90 0.65 90 

83 87 3.1 90 

99 89 0.0 89 

115 82 0.06 82 

131 32 5.4 38 

147 94 0.25 94 

163 64 3.7 68 

179 62 10 72 

195 48 6.8 55 

211 83 2.7 85 

227 95 0.00 95 

243 95 0.36 95 

259 93 0.52 93 

275 78 4.2 82 

291 6.6 2.2 8.7 

307 93 0.71 93 

323 42 12 55 

339 3.7 1.8 5.5 

355 79 14 93 

 205 

2.2. A cloudy forest site 206 

        Dense time series data are needed for monitoring vegetation dynamics, and monitoring 207 

tropical and subtropical forests is very important to quantifying their important role in the global 208 

carbon cycle. However, persistent cloud cover poses challenges when monitoring tropical forest 209 

vegetation. To investigate the accuracy of the proposed method to screen clouds and shadows in 210 

cloudy tropical forest regions, the second site is northeastern Puerto Rico (Fig. 2). This site has an 211 

area of 1,836 km2 (1200×1700 Landsat pixels), and the central coordinates are 18.321֯ N and 212 

65.838 ֯ W. The major land cover type is forest, including the EI Yunque National Forest, where 213 

extensive tropical montane cloud forests occur that by definition are persistently cloudy. This site 214 
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also includes bright, wet and dark features that are easily confused with clouds or cloud shadows. 215 

It includes much of the capital city of Puerto Rico, San Juan, coastal areas with features like sand, 216 

rock and coral reefs, topographic shadow associated with steep topography and many fields with 217 

bright, wet or bare soils. The Landsat WRS-2 scene Path 4 and Row 47 covers the area. A total of 218 

18 Landsat 8 OLI images from May 26 2013 to May 29 2014 (i.e., one-year length) and their 219 

corresponding Fmask cloud layers were downloaded from USGS Earth Explorer. The total cloud 220 

and shadow coverage of the images as estimated by Fmask ranges from 5% to 81%, and the mean 221 

coverage is 45%, indicating this site is also seriously affected by clouds. In this site, another 11 222 

Landsat-4 MSS images from the year 1983 were collected to test the performance of the proposed 223 

method for screening clouds and shadows in images with limited bands and low radiometric 224 

resolution. For these MSS images, corresponding Fmask cloud masks are not available from USGS 225 

Earth Explorer because Fmask uses thermal bands, which are not included in MSS images. 226 

Through visual inspection, these 11 MSS images have diverse cloud and shadow coverage, from 227 

almost cloud-free to fully covered by clouds.  228 

 229 

Fig. 2. True color composition of a Landsat-8 image from 2013 (DOY210) of northeastern 230 

Puerto Rico. 231 
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 232 

Table 2. Summary of cloud and shadow coverage of Landsat 8 OLI images for the Puerto Rico 233 

site using Fmask product 234 

DOY Cloud coverage % Shadow coverage % Total cloud and shadow coverage% 

146 41 4.1 45 

178 43 8.0 51 

210 4.3 1.6 5.9 

226 39 5.6 45 

242 40 8.2 48 

258 28 6.5 35 

274 67 14 81 

290 27 8.1 35 

306 8.5 1.1 9.6 

322 30 6.7 37 

354 58 13 71 

5 24 11 35 

21 43 13 56 

53 41 12 54 

69 31 9.5 41 

117 37 6.5 44 

133 38 3.0 41 

149 59 14 72 

 235 

2.3. A seasonal-change site 236 

        Strong seasonality is another challenge for most multi-temporal cloud screening methods. 237 

The large variation of spectral values due to seasonality may be confused with the variation due to 238 

occurrence of clouds and cloud shadows. To investigate the accuracy of the proposed method to 239 

screen clouds and shadows in regions with strong seasonality, the third site is Beijing metropolis 240 

and its surrounding rural areas (Fig. 3). This site is covered by an entire Sentinel-2 tile (about 241 

12,000 km2), and the central coordinates are 40.154 ֯ N and 116.495֯ E. This site has a lot of bright 242 

land surface and its vegetation is deciduous with strong seasonality. Images from different seasons 243 

in Fig. 3 show that vegetation grows to a peak greenness in summer and loses leaves in winter. In 244 

addition, the high mountains in this site bring difficulties for both cloud and cloud shadow 245 
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detection. Twenty Sentinel-2 images in 2016 with varying cloud cover were downloaded from 246 

USGS Earth Explorer (Table 3). The Fmask cloud masks of these Sentinel-2 images were obtained 247 

using the Matlab code (Version 3.3; https://github.com/prs021/fmask) specific for Sentinel-2 248 

images (Zhu et al., 2015). The total cloud and shadow coverage of the images as estimated by 249 

Fmask ranges from 0.1% to 100%, and 7 images have less than 20%, indicating this site has more 250 

clear images than the other two sites.  251 

 252 

Fig. 3. False-color Sentinel-2 images in Beijing from different seasons in 2016 (the yellow box 253 

in upper left image is a forest region of interest (ROI) used to demonstrate the seasonality in Fig. 254 

9) 255 

 256 

 257 

 258 
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 259 

 260 

 261 

 262 

 263 

 264 

Table 3. Summary of cloud and shadow coverage of 20 Sentinel-2 images in 2016 for the Beijing 265 

site using cloud masks by Fmask 266 

Date Cloud coverage % Shadow coverage % Total cloud and shadow coverage% 

Jan.26 42.4 17.7 60.1 

Mar.14 0.7 0.5 1.2 

Mar.24 0.1 0.0 0.1 

Apr.3 0.2 0.2 0.4 

Jun.2 13.2 1.8 15.0 

Jun.12 56.4 6.2 62.6 

Jul.22 90.3 9.7 100.0 

Aug.1 78.6 4.6 83.2 

Aug.11 41.2 9.4 50.6 

Aug.21 22.6 6.1 28.7 

Aug.31 7.6 4.6 12.2 

Sep.20 36.4 3.5 39.9 

Sep.30 34.4 8.1 42.5 

Oct.10 19.3 7.3 26.6 

Oct.20 100.0 0.0 100.0 

Oct.30 75.7 9.3 85.0 

Nov.19 2.6 1.8 4.4 

Nov.29 100.0 0.0 100.0 

Dec.9 16.0 8.8 24.8 

Dec.29 7.1 4.1 11.2 

 267 

3. Methodology 268 

        There are five main steps in ATSA (Fig. 4). Either TOA reflectance or surface reflectance data 269 

can be used as inputs. The five main steps are: (1) compute a cloud index and a shadow index from 270 

the image bands to highlight cloud and shadow pixels; (2) detect clouds initially with unsupervised 271 
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clustering of these indices for individual images in the time series; (3) refine the cloud pixels 272 

through analyzing the time series of the cloud index; (4) predict the potential shadow locations 273 

through the geometric relationships among the sun, clouds, and the Earth surface; (5) confirm the 274 

real shadow pixels through analyzing the time series of the shadow index. We detail these steps 275 

below.  276 

 277 

 278 

Fig. 4. Flowchart for the Automatic Time-Series Analysis (ATSA) to screen clouds and cloud 279 

shadows 280 

 281 

3.1. Calculate cloud index and shadow index 282 

       Given the wide ranges of reflectance values exhibited by diverse cloud- and Earth surface 283 

types, individual spectral bands from one image cannot accurately differentiate clouds, cloud 284 
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shadows and clear observations. With image time series, significant seasonality of some land cover 285 

types (e.g., natural vegetation and agriculture) and land-cover change (e.g., deforestation and 286 

urbanization) lead to large temporal variability of reflectance in image time series, which is easily 287 

confused with temporal variability caused by clouds and cloud shadows. Therefore, there is a need 288 

to combine or transform individual bands to get indices that highlight the clouds and cloud 289 

shadows while compressing variability in other land cover types, so that clear observations have 290 

values that are as stable as possible in the time series.   291 

        As land and water surfaces have very different spectral characteristics (Zhu and Woodcock, 292 

2012), the cloud and shadow indices are designed separately for land and water surfaces. A water 293 

mask is needed in our method. Fortunately, a water mask can be easily obtained through classifying 294 

a cloud-free image in the time series or from an existing water mask. There are now several water 295 

masks available at different resolutions, such as a 30-m water mask from a Landsat-based global 296 

land cover product (Chen et al., 2015) and a 250-m global water mask from MODIS data (available 297 

in http://landcover.org/data/watermask/). In our test experiments, we classified a cloud-free image 298 

to obtain the water mask. 299 

        For land surfaces, we used the haze optimal transformation (HOT) as a cloud index. The HOT 300 

transformation is derived from an analysis of Red-Blue spectral space. These two bands have a 301 

perfect linear relationship for diverse land cover types under clear-sky conditions (Zhang et al., 302 

2002), and Zhang et al. (2002) name this perfect line the clear-sky line (see the red line in Fig. 5 303 

a). For pixels contaminated by haze and clouds, their spectral response in Red-Blue space is very 304 

different from the clear-sky line, so the HOT index was designed to quantify the perpendicular 305 

distance of a pixel from the clear-sky line: 306 

http://landcover.org/data/watermask/
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𝐻𝑂𝑇 =
|𝑎 × 𝐵𝐵𝑙𝑢𝑒 − 𝐵𝑅𝑒𝑑 + 𝑏|

√1 + 𝑎2
 (1) 

where BBlue and BRed are pixel values of blue and red bands respectively, and a and b are the slope 307 

and intercept of the clear-sky line. 308 

 309 

Fig. 5. A land-surface subset of a Landsat-8 image and its Red-Blue scatter plot (a) and a water-310 

surface subset Landsat-8 image and its NIR-Blue scatter plot (b) 311 

 312 

        In the original HOT transformation (Zhang et al., 2002), the clear-sky line comes from 313 

regressing spectral values of pixels selected from areas of a scene that visually are deemed to be 314 

the clearest. To make our method automatic, we employed a bin-based approach to search for the 315 

clearest pixels in each scene. This approach has three steps: (1) divide the 0-0.15 range of blue 316 
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reflectance values into 50 bins with equal intervals, because cloud-free pixel values of most land-317 

cover types are within this range; (2) for each bin, select the 20 pixels with the largest reflectance 318 

values in the Red band and compute the average value of these selected pixels for red and blue 319 

bands, respectively, yielding a pair of red and blue reflectance values for each bin (BRedi, BBluei) ; 320 

(3) for all 50 pairs of (BRedi, BBluei), regress BRedi against BBluei to get the clear-sky line using the 321 

least absolute deviation (LAD) regression method to avoid the effect of outliers (Bassett and 322 

Koenker, 1978). If some images in the time series are completely covered by clouds, no clear 323 

pixels can be found for estimating the clear-sky line. For these completely cloud-covered images, 324 

the average slope and intercept of clear-sky lines derived from other images in the time series are 325 

used to compute the HOT index. To demonstrate the effectiveness of a bin-based automatic 326 

approach, the retrieved clear-sky line in a sub-image was compared with the result using manually 327 

selected clear pixels (Fig. 6). The slope and intercept of the clear-sky line from the bin-based 328 

approach is very similar to the results from the manual approach. 329 
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 330 
Fig. 6. Comparison between the clear-sky line of a sub-image estimated by the proposed 331 

automatic bin-based approach (a) and that using manually selected clear pixels marked by red 332 

ROIs (b). 333 

 334 

        For water surfaces, the cloud-free pixel values of the red and blue bands are not on the clear-335 

sky line, leading to large HOT values that are confused with thin clouds. Consequently, a new HOT 336 

index, designed specifically for water surfaces, is needed. In the Blue-NIR space, the spectral 337 

response of cloud-free water pixels, including turbid or shallow water and coral reefs, is very 338 

different from cloudy pixels (Fig. 5b). A new HOT index for water surface, HOTw is given as: 339 
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𝐻𝑂𝑇𝑤 =
|𝑎𝑤 × 𝐵𝑁𝐼𝑅 − 𝐵𝐵𝑙𝑢𝑒 + 𝑏𝑤|

√1 + 𝑎𝑤
2

 (2) 

where aw and bw are the slope and intercept of the clear-sky line for water bodies and are obtained 340 

through the same method as for the land surface. Then, the HOT indices for land and water surfaces 341 

are combined to yield a cloud index map (Fig. 7b). In this cloud index map, we can see that the 342 

HOT transformation yields an index with a larger difference between cloud and bright non-cloud 343 

objects than the individual visible bands. All clouds and haze are highlighted by larger values (i.e. 344 

white color) while all cloud-free pixels have a very low value (i.e. dark color).  345 

 346 

Fig. 7. False color Landsat-8 image of DOY149 in the Puerto Rico site (a), its corresponding 347 

HOT cloud index (b), initial cloud mask (c), and final cloud mask (d). In (c) and (d): gray is clear 348 

pixels and white is clouds. The time series analysis adds thin clouds to the initial cloud mask, 349 

and the minority analysis removes scattered bright pixels in urban and coastal areas in the upper 350 
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left of panel (c), which would otherwise be confused with clouds. 351 

 352 

        To further compare the ability of the original bands and HOT for discriminating clouds and 353 

clear land surface, the relative difference (RD) between cloud and cloud-free pixels in each image 354 

was computed: 355 

𝑅𝐷 =
�̅�𝑐𝑙𝑜𝑢𝑑 − �̅�𝑐𝑙𝑒𝑎𝑟

�̅�𝑐𝑙𝑜𝑢𝑑

 (3) 

where �̅�𝑐𝑙𝑜𝑢𝑑  and �̅�𝑐𝑙𝑒𝑎𝑟  are average values of cloudy pixels and clear pixels respectively. RD 356 

ranges from 0 to 1 and larger values indicate a higher separability between cloudy and clear pixels. 357 

Fig. 8 shows the RD values of the Blue band and the HOT index of Landsat-8 images which contain 358 

both clear and cloudy pixels in the Hong Kong site. Hong Kong includes both forests and 359 

considerable bright urban surfaces. It is a challenging site for cloud detection. We can see that in 360 

these images HOT index is better than the original Blue band at separating clouds from clear land 361 

surfaces.  The comparisons of RD values between the Red band and the HOT index, and between 362 

the NIR band and the HOT index, have a similar pattern (results not shown). 363 

 364 
Fig. 8. Relative difference (RD) between the average value of cloudy and clear pixels of the Blue 365 
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band and the HOT index in Hong Kong Landsat-8 images. A larger RD indicates higher 366 

separability between cloud and clear pixels. 367 

 368 

        For cloud shadows, direct solar radiation is blocked by clouds, so the shadow pixels are 369 

illuminated by scattered light. Because the atmospheric scattering is weaker at longer wavelengths, 370 

the NIR and SWIR bands of shadow pixels are much darker than surrounding clear pixels (Zhu et 371 

al., 2015). Therefore, the shadow index (SI) is defined as: 372 

𝑆𝐼 = 𝐵𝑁𝐼𝑅 + 𝐵𝑆𝑊𝐼𝑅 (4) 

        However, water also absorbs most radiation at longer wavelengths, so water pixels not 373 

obstructed by clouds are as dark as shadow pixels in NIR and SWIR bands (Li et al., 2017). 374 

Consequently, for water surfaces, the shadow index is calculated with the blue and green bands: 375 

𝑆𝐼𝑤 = 𝐵𝐵𝑙𝑢𝑒 + 𝐵𝐺𝑟𝑒𝑒𝑛 (5) 

      For old satellite images with fewer bands, such as Landsat MSS images with only green, red, 376 

and 2 NIR bands, the green band replaces the blue band in Eqs. (1, 2, and 5), because it is highly 377 

correlated with blue band. Also, the second NIR band replaces the SWIR band in Eq. (4), because 378 

both the NIR and SWIR bands are good indicators of cloud shadows. Similarly, for other sensors 379 

without SWIR bands, such as IKONOS, we anticipate that only one NIR band would be used as 380 

the shadow index for land surfaces. 381 

 382 

3.2. Detect cloud initially 383 

        All cloud index images of the time-series are classified by an unsupervised classifier, k-means, 384 

to get the initial cloud mask. First, a certain number (e.g. 10,000) of sample pixels are selected by 385 

systematic sampling of all cloud index images. Selecting samples from all images in the time series 386 
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ensures that samples of clear surfaces, thin clouds, and thick clouds are included. Using the 387 

selected samples rather than all pixels speeds up the k-means optimization in the next step. Second, 388 

these samples are classified with the k-means method into three classes. The three classes are 389 

labeled based on the relative value of the class means, i.e., the lowest class mean is clear pixels, 390 

the middle one is thin clouds, and the highest one is the thick clouds. The k-means method uses an 391 

iterative procedure. At each iteration, each sample is assigned to one class based on the closeness 392 

to the class means obtained from the last iteration, and new class means are updated using new 393 

class labels of samples. The iterative process will be ended when the class labels no longer change 394 

(Lloyd, 1982). Third, individual pixels in each cloud index image of the time series are identified 395 

as thin clouds, thick clouds, or cloud-free observations based on which class has the smallest the 396 

cloud-index distance from the class means of the sample pixels. Finally, an initial cloud mask is 397 

produced for each image by combining thin clouds with thick clouds (Fig. 7c). The ranges of cloud 398 

index values for the three classes (thin clouds, thick clouds and clear), being derived from all pixels 399 

in the time series, form a set of thresholds that are adapted to a time series rather than a single 400 

image. 401 

 402 

3.3. Detect remaining extremely thin clouds and remove bright pixels that are not cloud or haze 403 

        Although the initial cloud mask already identifies most cloudy pixels, it may omit some 404 

cloudy pixels, especially extremely thin clouds and cloud edges with lower values of the cloud 405 

index. Therefore, the initial cloud masks need to be further improved with temporal information. 406 

For each pixel, its time series may include both cloudy points and cloud-free observations. In 407 

general, cloudy points have larger variations in spectral values than clear observations. This 408 

temporal property can help to identify cloudy points (Zhu and Woodcock, 2014). However, due to 409 
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changes in vegetation phenology or land cover, clear observations of some pixels also undergo 410 

temporal variations. However, compared with the original spectral bands, the cloud index derived 411 

from the HOT transformation depresses the temporal variations from different vegetation growth 412 

stages, soil inundation, or land-cover change. For instance, in a forest ROI from the Beijing site 413 

(marked by a yellow box in Fig. 3), the time series of the Red band shows a stronger seasonality 414 

than the HOT index (Fig. 9). The Red band is used to compute the HOT index. It has lower values 415 

in summer due to more absorption by vegetation. In contrast, the HOT index is more stable across 416 

different seasons and with smaller variability than the original Red bands. 417 

 418 
Fig. 9. Red reflectance and HOT index of cloud-free pixels in a forest ROI in Beijing (marked by 419 

a yellow box in Fig. 3) across different seasons. The circles are mean values and error bars are ± 420 

1 standard deviation. 421 

 422 

        Therefore, an analysis of the cloud index time series is conducted to refine the initial cloud 423 

mask. Fig. 10 gives an example of a cloud index time series of a pixel from the Puerto Rico site 424 

(column1173, row 1092). There are two points identified as clouds in the initial mask (the red 425 

points). Most of the other points (the black ones) should be clear observations. They are used to 426 

find an upper boundary in the HOT index for clear pixels, U(i). Points above this threshold are 427 

then also designated as cloudy.  For ith pixel: 428 
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𝑈(𝑖) = mean{𝐻𝑂𝑇(𝑖, 𝑡)|(𝑖, 𝑡) ∉ C} + 𝐴 × sd{𝐻𝑂𝑇(𝑖, 𝑡)|(𝑖, 𝑡) ∉ C} (6) 

where sd{·} is the standard deviation of the HOT index through the time series, HOT(i, t) is the 429 

HOT index value of the ith pixel at time t, and C is the set of cloudy points from the initial masks 430 

for ith pixel. A is a standard deviation multiplier that defines the upper boundary. A can be assigned 431 

a recommended value from 1 to 2. Smaller values would be able to identify thinner clouds, but 432 

meanwhile increase the risk of commission errors, i.e., identifying “clear” observations as cloudy 433 

points. In existing methods, this parameter is a constant for all pixels in the image (Goodwin et al., 434 

2013; Hagolle et al., 2010). However, cloud frequency is different in different parts of the image, 435 

so some pixels may include more cloud points in the HOT time series that are omitted in the initial 436 

detection than others. Therefore, we need to consider this difference among pixels when we set the 437 

value of parameter A. In general, clouds cause large variations in the HOT time series. We 438 

introduced a new variable, the normalized difference range index (NDRI), to tune the parameter 439 

A: 440 

𝑁𝐷𝑅𝐼(𝑖) = (𝑇𝑘𝑚𝑒𝑎𝑛𝑠 − 𝑅𝑎𝑛𝑔𝑒𝑖)/( 𝑇𝑘𝑚𝑒𝑎𝑛𝑠 + 𝑅𝑎𝑛𝑔𝑒𝑖) (7) 

𝑅𝑎𝑛𝑔𝑒𝑖 = max{𝐻𝑂𝑇(𝑖, 𝑡)|(𝑖, 𝑡) ∉ C} − min{𝐻𝑂𝑇(𝑖, 𝑡)|(𝑖, 𝑡) ∉ C} (8) 

where Tkmeans is the minimum HOT value of all cloud pixels identified by K-means in section 3.2. 441 

NDRI is further used to adjust the parameter A in Eq. (6) as a pixel-wise parameter A(i): 442 

𝐴(𝑖) = 𝐴 + 𝑁𝐷𝑅𝐼(𝑖) (9) 

The value for A(i) is used in Eq. (6) to calculate the pixel-level upper boundary U for each pixel 443 

in the time series. A(i) further tunes the pixel-level upper boundary U by adapting the standard 444 

deviation multiplier to the temporal variability of each pixel. Because NDRI is added to A, we 445 

recommend an A value from 0.5 to 1.5 (instead of 1 to 2). Pixels with larger variation in the HOT 446 
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time series will have a lower upper boundary, i.e. a stricter threshold. Any points above the upper 447 

boundary, e.g. the dashed line in Fig. 10, will be identified as clouds.  448 

 449 

Fig. 10. An example of cloud index time series: the two black points above the dashed line are 450 

identified as clouds based on the time series analysis. 451 

        The cloudy points detected from the time series analysis are the final cloud mask (Fig. 7d). 452 

This step adds more thin clouds to the initial mask and also contributes to filtering bright non-453 

cloud objects. For instance, very bright land surfaces (e.g., airport runways and beach sand) may 454 

show consistently high values in the cloud-index time series, leading to a high threshold in Eq. (6). 455 

As a result, pixels of these bright land surfaces are not likely to be identified as clouds because 456 

their cloud index values are unlikely to exceed the high threshold. In addition, assuming that clouds 457 

are generally wider than a few pixels at Landsat spatial resolution, isolated pixels identified as 458 

being cloudy are removed from the cloud mask using a repeated minority analysis. We removed 459 

cloud pixels if 4 or fewer pixels in the 3-by-3 neighborhood of a pixel are cloud pixels. This step 460 

removes any remaining isolated, bright pixels in urban and coastal areas that are not clouds. Finally, 461 

similar to Fmask, all cloud patches are buffered with a width of 1 pixel to further reduce omission 462 

errors around cloud edges. 463 
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 464 

3.4. Estimate potential shadow zones 465 

        Shadow pixels are easily confused with dark objects and topographic shadow even in shadow 466 

index maps. However, clouds always accompany cloud shadows except at scene edges. This 467 

characteristic can help reduce commission (e.g., wet soil, topographic shadow) errors of cloud 468 

shadow detection. Actually, the location of cloud shadows can be calculated by the precise 469 

geometric relationship among clouds, cloud shadows and the position of the sun (Zhu and 470 

Woodcock, 2012). For a cloudy pixel with coordinates (x, y), the location of its corresponding 471 

shadow pixel (x’, y’) can be calculated using following equations (Luo et al., 2008): 472 

𝑥′ = 𝑥 − 𝐻 × tan 𝜃 sin 𝜙 (10) 

𝑦′ = 𝑦 − 𝐻 × tan 𝜃 cos 𝜙 (11) 

where H is the height of clouds above the land surface, and θ and ⏀ are solar zenith and azimuth 473 

angles. Values of θ and ⏀ can be extracted from the image metadata files, but H is unknown for 474 

each cloud patch. In most existing methods, the brightness temperature (BT), derived from thermal 475 

infrared bands, is used to estimate cloud height with lapse rates for air temperature, such as -476 

9.8K/Km for dry air and -6.5K/Km for moist air (Goodwin et al., 2013; Huang et al., 2010; Zhu 477 

and Woodcock, 2012). However, there are two problems with estimating cloud height when 478 

locating cloud shadows: (1) the lapse rate varies in different atmospheric conditions, and the BT 479 

of thin clouds is also influenced by the land surface; (2) some sensors, especially old ones, do not 480 

have thermal infrared bands, such as the Landsat MSS sensor, the CBERS IRMSS sensor and the 481 

Sentinel MSI sensors. For Landsat 8 also, a method for masking clouds and shadows that does not 482 

require a thermal band is needed. The Thermal Infrared Sensor (TIRS) has some error and 483 

intermittent availability and has a shorter design life than the multispectral Operational Land 484 
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Imager (OLI). That thermal data may not always be available is one obstacle to improving Landsat 485 

8 cloud and shadow masks with image time series (Foga et al., 2017; Scaramuzza et al., 2012).  486 

        To make the proposed method able to process historical images without thermal infrared 487 

bands, a range of possible cloud heights are used to estimate all possible shadow locations of a 488 

cloud. We can use a default value of 200 m for minimum cloud heights because it is suitable for 489 

most areas (Zhu and Woodcock, 2012). The maximum cloud heights can be determined empirically 490 

by visually checking the maximum horizontal distance (Dmax) between clouds and their shadows, 491 

or using 12 km based on previous studies (Fisher, 2013; Luo et al., 2008) : 492 

𝐻𝑚𝑎𝑥 =
𝐷𝑚𝑎𝑥

√(tan 𝜃 sin 𝜙)2 + (tan 𝜃 cos 𝜙)2
 (12) 

        Fig. 11b shows an example of potential shadow zones of a subset of image DOY146 in the 493 

Puerto Rico site. We can see that the real shadows are located within the potential shadow zones. 494 

 495 



30 

 

 496 

Fig. 11. A subset of the Landsat-8 image DOY146 in the Puerto Rico site (a), its potential shadow 497 

zones (b), shadow darkness as estimated by Inverse Distance Weighting (IDW) (c), and the initial 498 

shadow detected by K-means (d). 499 

 500 

3.5. Detect shadow within potential shadow zones 501 

        The potential shadow zones mark the possible locations of cloud shadows. They overestimate 502 

the real shadow areas. Therefore, all the pixels within the shadow zones need to be further 503 

confirmed as to whether they are real shadow pixels. In the shadow index images, shadows are 504 

located at places with regional minima (i.e. “holes”) due to their being relatively dark in optical 505 

bands. Some existing methods use flood-fill transformation to predict the image without shadows 506 

and compare it with real images to identify shadow pixels (Li et al., 2017; Zhu and Woodcock, 507 
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2012). However, this approach may often mislabel dark objects, such as water, as cloud shadow 508 

(Li et al., 2017). Here, a similar idea is employed, but the new strategy reduces errors as compared 509 

with the flood-fill method. First, in the shadow index images, pixels in potential shadow zones are 510 

predicted from surrounding clear pixels with an inverse distance weighted (IDW) interpolator. 511 

Second, for those pixels in potential shadow zones, we estimate their “darkness” as their original 512 

shadow index minus the predicted values (Fig. 11c, a darker color means higher darkness). This 513 

darkness only shows how cloud shadows lower the pixel brightness compared with surrounding 514 

clear pixels. Third, similar to initial cloud detection, K-means clustering is applied to these 515 

darkened pixels (i.e. pixels with negative darkness values) to classify these pixels into two classes, 516 

clear observation and cloud shadow, to yield an initial shadow mask (Fig. 11d).  517 

        After the initial shadow detection, we apply a time series analysis, similar to the cloudy point 518 

refinement, to refine the initial shadow mask. This process aims to reduce both omission and 519 

commission errors in the initial shadow mask. Because cloud shadows have darkening effects, 520 

which lead to lower shadow index values in the time series of a pixel, a lower boundary L is used 521 

as a threshold to identify real shadow points. Considering differences in earth-sun-sensor geometry, 522 

atmospheric conditions and vegetation phenology, the shadow index of land surfaces needs to be 523 

normalized to minimize these differences prior to the time series analysis. Here, the histogram 524 

matching method is used given its simplicity (Helmer and Ruefenacht, 2005). Although histogram 525 

matching is a linear correction, and changes in vegetation phenology across an image can be 526 

nonlinear (Helmer and Ruefenacht, 2007), we found that histogram matching worked well for 527 

mitigating the temporal variability in shadow-index time series. First, the image with the fewest 528 

clouds in the time series is selected as a base image. Then, the shadow index of other images is 529 

normalized to this base image using the gain and bias:  530 
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𝑔𝑎𝑖𝑛 =
𝜎𝐵

𝜎𝑡
 

𝑏𝑖𝑎𝑠 = 𝜇𝐵 − 𝜇𝑡 × 𝑔𝑎𝑖𝑛 

(13) 

where µB and µt are the mean value of clear pixels in the base image and the image at time t 531 

respectively, σB and σt are the standard deviations of clear pixels in the base image and the image 532 

at time t respectively. The normalized shadow index value of image at time t, SIN (i, t), can be 533 

computed as:  534 

𝑆𝐼𝑁(𝑖, 𝑡) = 𝑆𝐼(𝑖, 𝑡) × 𝑔𝑎𝑖𝑛 + 𝑏𝑖𝑎𝑠 (14) 

This lower boundary L is defined using “good” points, which are those points not identified as 535 

shadow in the initial shadow mask (Fig. 12): 536 

𝐿(𝑖) = mean{𝑆𝐼𝑁(𝑖, 𝑡)|(𝑖, 𝑡) ∈ "good"} − 𝐵 × sd{𝑆𝐼𝑁(𝑖, 𝑡)|(𝑖, 𝑡) ∈ "good"} (15) 

where B is a standard deviation multiplier that serves as a parameter to tune the threshold, L(i) is 537 

the lower threshold for pixel i, mean is the mean shadow index (SI) of pixel i for the time series, 538 

and sd is the standard deviation of the SI for the time series of pixel i. Pixels with SI brighter than 539 

L(i) are deemed too bright to be cloud shadow. The recommended value of B is from 1 to 3, and a 540 

larger value will select darker shadows, i.e., it will darken the threshold for designating whether 541 

pixels are shadow. Therefore, the parameter B should be set to balance the omission and 542 

commission errors for shadow detection. For the initial shadow points, they are confirmed as real 543 

shadow if their shadow index values are lower than the mean value of “good” points. This step 544 

reduces the commission errors in initial shadow detection. For other points in the time series which 545 

are marked as potential shadow using sun-cloud geometry, they will be identified as final shadow 546 

points if their shadow index values are lower than L (Fig. 12). This step reduces the omission errors 547 
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in the initial shadow detection. It should be noted that although the potential shadow zones and 548 

time series analysis can greatly prevent classifying topographic shadow as cloud shadow, 549 

topographic shadow within the potential shadow zones may be identified as cloud shadows if it is 550 

as dark as cloud shadow. 551 

 552 

Fig. 12. An example of shadow index time series analysis: the points below the dashed line are 553 

identified as cloud shadow. The dashed line represents L, the lower threshold. 554 

 555 

        Similar to the cloud mask, isolated shadow pixels are also filtered out by a repeated minority 556 

analysis in a 3-by-3 neighborhood, and then all shadows are buffered, with a width of 1 pixel, to 557 

obtain the final shadow mask. The final shadow mask is combined with the final cloud mask to 558 

get the final product of cloud and shadow mask.  559 

 560 

3.6. Evaluation and comparison  561 

        To demonstrate the accuracy and effectiveness of the proposed method, it was compared with 562 

Fmask (Zhu and Woodcock, 2012), one of the most advanced single-image methods and used by 563 

USGS to produce the standard cloud mask for Landsat images. The results of Fmask can be 564 

considered as a benchmark to assess the performance of ATSA. Both ATSA and Fmask were 565 
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applied to Landsat-8 OLI and Sentinel-2 images, while only ATSA was applied to Landsat-4 MSS 566 

images in the second site, because MSS images lack not only thermal bands but also other bands 567 

that are needed by Fmask. We found that Fmask detected many clouds as snow in some images in 568 

the Hong Kong and Puerto Rico sites (Fig. 13). Because these two test sites are subtropical and 569 

never have snow, we merged snow into clouds before the comparison, but this adjustment was not 570 

made for cloud masks in Beijing site because it can snow in winter. 571 

 572 

 573 

Fig. 13. Landsat-8 image DOY178 in the Puerto Rico site (a) and its original Fmask cloud mask 574 

(b) showing where clouds are classified as snow (light blue color). 575 

 576 

        In the comparison, the agreement between these two methods was evaluated. First, the 577 

percentage of clouds and cloud shadows of all methods were plotted together to check their 578 

difference. Second, matrices were built comparing the proposed ATSA and Fmask methods, and 579 

the overall agreement derived from these matrices was used to assess the pixel-wise agreement 580 

between ATSA and Fmask. Third, representative images selected from the time series were 581 

digitized to produce reference cloud and shadow masks. The digitizing work was done by 582 

experienced experts who were not involved in the development of ATSA. Then, these digitized 583 

maps were used to quantitatively evaluate the accuracy of both methods. It should be noted that 584 
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the manual mask of cloud and cloud shadow is not 100% accurate. It may include some 585 

commission or omission errors. 586 

4. Results 587 

4.1. Hong Kong site 588 

        Among 23 images to which we applied the two cloud and shadow masking methods, the two 589 

methods detect similar cloud cover for 19 of them (Fig. 14), while for the other 4 images (DOY 590 

131, 179, 195, and 339) there are large differences. For the 19 images with similar cloud coverage, 591 

visual inspection confirms that both methods successfully detect clouds (see image of DOY 51 as 592 

an example in Fig. 16). For images of DOY 131 and 339, ATSA detected many more clouds than 593 

Fmask. On the other hand, for images of DOY 179 and 195, ATSA detected far fewer clouds than 594 

Fmask. Unlike cloud coverage, shadow coverage detected by the two methods slightly differs in 595 

most of the 23 images except the image DOY 355 (Fig. 14). Visual inspection of this image 596 

confirms that Fmask detected all water surface as cloud shadow. There are 5 images in the time 597 

series with large disagreement between ATSA and Fmask (Fig. 15). Agreement between ATSA and 598 

Fmask for the images of DOY 131, 179 and 339 is even lower than 50%. 599 

 600 

 601 
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Fig. 14. Cloud and shadow coverage of 23 Landsat-8 OLI images in the Hong Kong site detected 602 

by ATSA and Fmask. 603 

 604 

Fig. 15. Overall agreement of cloud and shadow masks of 23 Landsat-8 OLI images in the Hong 605 

Kong site between ATSA and Fmask. 606 

 607 

        In the cloud masks of the three images with the least agreement between ATSA and Fmask, 608 

it is clear from Fig. 16 that ATSA more accurately identified clouds. Fmask underestimated clouds 609 

in two images of DOY 131 and 339, and it overestimated clouds in the image of DOY 179. 610 

Specifically, Fmask failed to screen many of the thin clouds in the center of the image of DOY 611 

131, and it failed to identify many of the thick clouds in the image of DOY339, even though these 612 

clouds appear very bright in all visible and NIR bands. In the image of DOY179, Fmask 613 

misidentified most of the clear water and some clear land surface (see the island in the lower right) 614 

as clouds, which led to serious overestimation of cloud cover. For the cloud shadows, it appears 615 

that ATSA successfully identified most shadows adjacent to clouds. Fmask identified some clear 616 

pixels as shadow that were near the misidentified cloud patches (see image of DOY 179 in Fig. 617 

16).  618 

         619 
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 620 

Fig. 16. False color composite of selected Landsat images (upper row) and their cloud masks by 621 

Fmask (middle row) and ATSA (lower row) for the Hong Kong site (gray: clear pixels; black: 622 

shadows; white: clouds) 623 

 624 

       Quantitative accuracy assessment for the four images in Fig. 16 using manual masks shows 625 

that ATSA and Fmask obtain comparable overall accuracy for the image of DOY51, but ATSA’s 626 

overall accuracy is much higher than Fmask for the other three images (Table 4).  For cloud 627 

detection, ATSA obtained user’s accuracies ranging from 0.85 to 0.99 and producer’s accuracies 628 

ranging from 0.89 to 0.99. The accuracy of ATSA cloud mask for the image of DOY179 is lower 629 

than that of the other images due to the errors in haze detection on the water surface (see haze in 630 

the lower right part of this image). In contrast, the cloud producer’s accuracy of Fmask is low for 631 

images of DOY131 (0.41) and DOY339 (0.04) because of large omission errors. The cloud user’s 632 
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accuracy of Fmask is low for images of DOY179 (0.08) because it misidentified many clear pixels 633 

as clouds. For shadow detection, ATSA can obtain producer’s accuracy higher than 0.82. The 634 

shadow user’s accuracy is also high except the image of DOY179, in which ATSA overestimated 635 

the shadow area. In the context of applications with  cloudy images, the producer’s accuracy is 636 

more important than user’s accuracy, because end users hope to exclude all contaminated pixels in 637 

their analysis, and meanwhile they can allow commission errors to some extent (Zhu and 638 

Woodcock, 2012). Both user’s and producer’s accuracies of shadow detection by Fmask are much 639 

lower than ATSA. Specifically, Fmask detected fewer shadows in the image of DOY51 and 640 

identified clear pixels near the wrong cloud patches as shadow in other three images in Fig. 16. 641 

 642 

 643 

 644 

 645 

 646 

Table 4 Accuracy assessment of cloud masks of the 4 images in Fig. 16 in the Hong Kong site: 647 

overall accuracy (oa), user’s accuracy (ua) and producer’s accuracy (pa). 648 

   Cloud Shadow 

DOY  oa Ua pa ua pa 

51 
Fmask 0.93 0.97 0.98 0.60 0.49 

ATSA 0.99 0.99 0.99 0.95 0.87 

131 
Fmask 0.45 0.99 0.41 0.04 0.10 

ATSA 0.98 0.99 0.99 0.93 0.82 

179 
Fmask 0.29 0.08 0.98 0.08 0.26 

ATSA 0.97 0.85 0.89 0.67 0.90 

339 
Fmask 0.06 0.95 0.04 0.00 0.00 

ATSA 0.99 0.99 1.00 0.89 1.00 

 649 

4.2. Puerto Rico site 650 
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4.2.1. Landsat-8 OLI images 651 

        Among the 18 images, ATSA and Fmask obtained similar cloud coverage in 15 images, while 652 

ATSA detected many more clouds in three images (DOY178(2013), 306(2013), and 053(2014)) 653 

than Fmask (Fig. 17). For shadow coverage, ATSA detected slightly more shadows than Fmask in 654 

most images. Through visual inspection of these images, we found that Fmask underestimated 655 

shadows surrounding small cloud patches, which leads to smaller shadow percentage than ATSA. 656 

On the other hand, in the images DOY 274(2013), 354(2013), 53(2014), and 149(2014), ATSA 657 

detected fewer shadows than Fmask. Visual inspection shows that these four images only have 658 

large cloud patches. Fmask overestimated shadow cover of these large cloud patches. The 659 

quantitative assessment of pixel-wise agreement between the two methods is good (higher than 660 

80%) for masks of most images, but the masks of two images, DOY 178(2013) and 306(2013) 661 

have agreement between ATSA and Fmask that is lower than 60% (Fig. 18). For the images with 662 

good agreement between ATSA and Fmask, both methods successfully detect clouds (e.g. image 663 

DOY146(2013) in Fig. 19). In the two images with the least agreement between ATSA and Fmask, 664 

Fmask omitted a lot of thin clouds in west region in the image of DOY178(2013), and it missed a 665 

lot of cloudy pixels, even of thick clouds, in the image of DOY306(2013) (Fig. 19).  666 

 667 
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Fig. 17. Cloud and shadow coverage of 18 Landsat-8 OLI images in the Puerto Rico site detected 668 

by ATSA and Fmask 669 

 670 

 671 

Fig. 18. Overall agreement of cloud and shadow mask between ATSA and Fmask for the Puerto 672 

Rico site. 673 

 674 

Fig. 19. False color composite of the three Landsat images in the Puerto Rico site (upper row) 675 
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and their cloud and shadow masks by Fmask (middle row) and ATSA (lower row) (gray: clear 676 

pixels; black: shadows; white: clouds) 677 

        The quantitative accuracy assessment of the cloud masks of these three images in Fig. 19, 678 

using manual masks, shows that the overall accuracy of ATSA cloud and shadow masks ranges 679 

from 0.97 to 0.98, which is much higher than Fmask (Table 5). Cloud producer’s and user’s 680 

accuracy of ATSA reaches 0.97 in all three images, while cloud producer’s accuracies of Fmask 681 

are only 0.12 to 0.52 for the image of DOY178 and 306. Shadow producer’s and user’s accuracies 682 

of ATSA are lower than the cloud mask accuracy, but it is still much higher than Fmask. ATSA 683 

omitted some thin shadows on land surfaces in the lower part of image of DOY306 (Fig. 19) 684 

leading to a relatively lower producer’s accuracy of 0.86. Similar to the Hong Kong site, Fmask 685 

detected fewer shadows than the real situation, leading to low producer’s accuracy in shadow 686 

detection.  687 

 688 

Table 5. Accuracy assessment of cloud masks of three images in Fig. 19 in the Puerto Rico site: 689 

overall accuracy (oa), user’s accuracy (ua) and producer’s accuracy (pa). 690 

   Cloud Shadow 

DOY(Year)  oa ua pa ua pa 

146(2013) 
Fmask 0.90 0.85 0.98 0.58 0.34 

ATSA 0.98 0.97 1.00 0.92 0.94 

178(2013) 
Fmask 0.53 0.98 0.52 0.07 0.08 

ATSA 0.98 0.98 0.99 0.97 0.96 

306(2013) 
Fmask 0.28 0.98 0.12 0.03 0.00 

ATSA 0.97 1.00 0.98 0.97 0.86 

 691 

4.2.2. Landsat-4 MSS images 692 

        Only ATSA was applied to the 11 Landsat-4 MSS images in the Puerto Rico site, because 693 

Fmask needs more bands than MSS images have.  Four images with representative cloud coverages 694 
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(6.8% to 99% clouds; 0% to 12.6% cloud shadows) were selected for further assessment (Fig. 20). 695 

The cloud coverages of these four selected images are 6.8% (DOY40), 31.1% (DOY280), 41.4% 696 

(DOY24), and 66.1% (DOY200). Visual inspection shows that ATSA successfully identified most 697 

clouds and shadows in these MSS images (Fig. 21), including the thin clouds in the image of 698 

DOY200. We can see that the cloud user’s and producer’s accuracy of all four MSS images are 699 

higher than 0.95 (Table 6), indicating that ATSA successfully screened clouds in these images with 700 

very small omission and commission errors. For shadow accuracy, in terms of producer’s accuracy 701 

(more important for applications in our opinion), it is high enough in image DOY 40, and 280, 702 

reaching 0.97. The image DOY200 has shadow producer’s accuracy of 0.83 which is caused by 703 

the identification of shadows as clouds in the lower right part of this image (Fig. 21).  704 

 705 

Fig. 20.  Cloud and shadow coverage of 11 Landsat MSS images in the Puerto Rico site detected 706 

by ATSA.  707 

 708 
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 709 

Fig. 21. False color composite of the four representative Landsat MSS images in the Puerto Rico 710 

site and their cloud and shadow masks by ATSA (gray: clear pixels; black: shadows; white: 711 

clouds). 712 

 713 

 714 

 715 

Table 6. Accuracy assessment of cloud masks of four MSS images in Fig. 21 in the Puerto Rico 716 

site: overall accuracy (oa), user’s accuracy (ua) and producer’s accuracy (pa) 717 

  Cloud Shadow 

DOY oa Ua pa ua pa 

24 0.96 0.98 0.99 0.88 0.87 

40 0.99 1.00 0.99 0.89 1.00 

200 0.97 0.99 0.97 0.90 0.83 

280 0.98 1.00 0.98 0.92 0.97 

 718 

4.3. Beijing site 719 

        In general, the cloud coverage detected by ATSA is smaller than that of Fmask in the 20 720 

Sentinel-2 images. The cloud coverage difference between ATSA and Fmask is larger than or equal 721 

to 20% in three images, Aug. 21, Sep.30, and Oct.10 (Fig. 22). Through visual inspection of these 722 
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cloud masks, we found that both ATSA and Fmask misclassify some pixels in very bright urban 723 

surfaces as clouds, but this commission error of Fmask is more serious than ATSA. Fmask detected 724 

nearly all urban pixels as cloud or snow in the three images of Aug.21, Sep.30, and Oct.10. Similar 725 

to cloud coverage, shadow coverage detected by ATSA is generally lower than Fmask, except for 726 

images dated Oct. 30 and Nov. 29. The larger shadow coverage detected by Fmask results from 727 

the commission errors of cloud detection. In other words, Fmask detected many clear pixels as 728 

shadow surrounding areas wrongly detected as clouds. Regarding the pixel-wise agreement 729 

between ATSA and Fmask (Fig. 23), there are 7 images with overall agreement lower than 80% 730 

and 3 images lower than 70%. These three images are Jan.26, Aug.11, and Sep.30.  731 

 732 

Fig. 22. Cloud and cloud shadow coverage of 20 Sentinel-2 images in the Beijing site detected 733 

by ATSA and Fmask. 734 
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 735 

Fig. 23. Overall agreement of cloud and shadow mask between ATSA and Fmask for the 20 736 

Sentinel-2 images from the Bejing site. 737 

 738 

       For the images with high agreement between ATSA and Fmask, both methods successfully 739 

detect clouds and shadows (see Sep.20 image as an example in Fig. 24).  In the three images with 740 

the least agreement between ATSA and Fmask, ATSA is generally more successful than Fmask for 741 

identifying clouds and shadows. Specifically, in the Jan. 26 image, both ATSA and Fmask detected 742 

most of clouds. ATSA does not have snow detection step, so the snow in the northwest was 743 

misclassified as cloud in ATSA, while Fmask successfully detected these snows but it also 744 

identified many clear pixels as snow. Fmask also detected many clear and thin-cloudy pixels as 745 

snow in summer image where no snow events should happen. In addition, Fmask detected many 746 

clear urban pixels as cloud in the Sep. 30 image (Fig. 24). For cloud shadow detection, ATSA is 747 

more successful although it detected topographic shadows as cloud shadows in the Jan. 26 image. 748 

Images of mountainous areas have more topographic shadows in spring and winter due to the lower 749 

sun elevation. It may lead to larger commission errors in cloud shadow detection if these 750 

topographic shadows are within the potential shadow zones. In contrast, Fmask failed to detect 751 
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shadows which are distant from the cloud patches. The possible reason is that Fmask for Sentinel-752 

2 assumes the cloud height between 200 m and 1,200 m for all images (Zhu et al., 2015).  753 

 754 

Fig. 24. False color composite of the four Sentinel-2 images in the Beijing site (upper row) and 755 

their cloud mask by Fmask (middle row) and ATSA (lower row) (gray: clear pixels; black: 756 

shadows; white: clouds; snow: light blue) 757 

 758 

       The quantitative accuracy assessment also demonstrates that ATSA can obtain more accurate 759 

cloud and shadow masks than Fmask (Table 7). For the Sep. 20 image, both ATSA and Fmask can 760 

obtain acceptable accuracy in cloud detection. For other three images, cloud producer’s accuracy 761 

of ATSA ranges from 0.81 to 0.96 and cloud user’s accuracy ranges from 0.92 to 0.99. In contrast, 762 

cloud user’s accuracy of Fmask for the Sep.30 image is very low because of large commission 763 
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errors, and the low cloud producer’s accuracy of Fmask for the Aug.11 image is caused by large 764 

omission errors. For the Jan. 26 image, the producer’s accuracy of cloud detection for both Fmask 765 

and ATSA is only 0.81 because both methods omitted extremely thin clouds. For shadow detection, 766 

ATSA obtains good producer’s accuracy ranging from 0.81 to 0.96, which is much higher than 767 

Fmask ranging from 0.20 to 0.50, indicating that Fmask omitted considerable cloud shadow in 768 

these images. For the Jan. 26 image, the user’s accuracy of shadow detection by ATSA is only 0.5, 769 

because it detects many black rocks and topographic shadows as cloud shadows. In this 770 

mountainous area, some snow and ice pixels were misclassified as clouds, which makes the black 771 

rocks and topographic shadows within the potential shadow zone. This issue can be solved if the 772 

commission error in cloud detection is reduced, especially for distinguishing snow and ice from 773 

clouds. 774 

 775 

Table 7. Accuracy assessment of cloud masks of images in Fig. 24: overall accuracy (oa), user’s 776 

accuracy (ua) and producer’s accuracy (pa). 777 

   Cloud Shadow 

Date  oa ua pa ua pa 

Sep.20 
Fmask 0.89 0.80 1.00 0.20 0.41 

ATSA 0.98 0.99 1.00 0.62 0.81 

Jan.26 
Fmask 0.67 0.74 0.81 0.33 0.50 

ATSA 0.79 0.92 0.81 0.50 0.87 

Aug.11 
Fmask 0.68 0.77 0.65 0.21 0.46 

ATSA 0.97 0.99 0.96 0.94 0.86 

Sep.30 
Fmask 0.58 0.00 0.92 0.00 0.20 

ATSA 1.00 0.99 0.85 0.96 0.96 

 778 

 5. Discussion and conclusions 779 

        Masking clouds and cloud shadows is necessary for many applications of optical satellite 780 

images, because it is difficult to acquire totally cloud-free images in most places, particularly when 781 
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time series are needed to monitor change. Many methods have been developed to screen clouds 782 

and cloud shadows automatically in optical images. However, they may not perform well in very 783 

cloudy regions. Aiming to produce more accurate cloud and shadow masks of optical imagery in 784 

cloudy regions, an automatic time series analysis based method, ATSA, was developed in this study. 785 

ATSA was tested in three sites with different dominant land covers. Landsat-8 OLI images, 786 

Landsat-4 MSS images, and Sentinel-2 images were used to evaluate the performance of ATSA 787 

for screening clouds and cloud shadows in images with different band configurations and quality. 788 

Results show that ATSA can obtain accurate cloud and shadow masks in all sites and all data sets 789 

except the images with snow and ice cover. The comparison with an advanced algorithm, Fmask, 790 

also confirms that ATSA can yield robust and accurate cloud and shadow masks in cloudy regions. 791 

The good performance of ATSA can be attributed to the following strengths.       792 

        First, ATSA only needs a minimum number of input bands. Only 5 bands, blue, green, red, 793 

NIR, and SWIR bands, are required, and this requirement can be reduced to 3 bands if the images 794 

do not have blue and SWIR bands. The low requirement of input bands brings two advantages. 795 

The first advantage is that in the regions tested, the results can be more robust than existing 796 

methods when processing images with various conditions. Although the spectral similarities 797 

among different land surfaces and clouds and cloud shadows are complex, being different among 798 

locations and times, a common characteristic is that they affect the pixel values from visual to near 799 

infrared bands, i.e., clouds brighten these bands and shadows darken them. In general, adding more 800 

bands into the screening process, such as thermal bands or a cirrus band, can improve the accuracy 801 

of cloud and shadow masks, especially for the single-image cloud detection methods (Foga et al., 802 

2017; Zhu et al., 2015). However, it may also lead to more uncertainties and errors in some extreme 803 

cases. For example, Fmask uses visible, near infrared, and thermal bands to identify clouds; it also 804 
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uses the cirrus band in Landsat-8 images to detect clouds (Zhu et al., 2015), while ATSA uses 805 

neither the thermal nor cirrus bands. In the Hong Kong site, for the image DOY339, Fmask misses 806 

most clouds. A further investigation of all bands of this image reveals that the thermal band is 807 

cooler in a small sub-area of this mostly cloudy image (Fig. 25). As a result, Fmask only detects 808 

clouds in this cold area and omits other warmer clouds. According to the USGS product guide, 809 

Fmask has a known issue that either too large or too small temperature differentials will lead to 810 

errors in cloud detection. The second advantage of using fewer bands is that the algorithm is more 811 

flexible and applicable than existing methods when processing images from different optical 812 

sensors. For cloudy places, we expect ATSA to: (1) extend the history for automated Landsat time 813 

series analyses with cloud and cloud shadow masks that are highly accurate, but automatically 814 

derived, back to the MSS era of the 1970s (instead of only the TM era of the 1980s); and (2) in the 815 

era of Sentinal-2, allow for denser time series in intra-annual analyses such as those examining 816 

vegetation phenology. The past and ongoing optical sensors have different configurations of 817 

spectral bands. However, most of these optical sensors have visible and near infrared bands. ATSA 818 

can be applied to all images with these basic bands, which is very important and necessary when 819 

we process historical satellite images with limited bands. 820 

 821 

Fig. 25. False color composite of the Landsat-8 images DOY339 in the Hong Kong site (left), its 822 

cloud mask by Fmask (center), and the thermal band of this image (right) 823 
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         824 

        Second, ATSA has fewer predefined parameters than most existing methods. In ATSA, there 825 

are only two important predefined parameters, i.e., A in Eq. (8) and B in Eq. (12) tune the threshold 826 

for identifying clouds and shadows in the time series respectively. As standard deviation 827 

multipliers of variation through the time series, these two parameters regulate the degree of 828 

strictness for masking clouds and shadows. In other words, they balance the omission errors and 829 

commission errors of cloud and shadow detection. In our tests, A and B are 0.5 and 1.5 for the 830 

Hong Kong site, 1.0 and 1.5 for the Puerto Rico site, and 1.2 and 2.0 for the Beijing site. Fig. 26 831 

shows the cloud user’s and producer’s accuracy for the Landsat-4 MSS image DOY200 in Fig. 21 832 

when using different values of parameter A within the recommended range 0.5-1.5. Larger values 833 

of parameter A improve the user’s accuracy but meanwhile decrease the producer’s accuracy. The 834 

parameter B shows a similar effect on the accuracy of cloud shadow detection. Fig. 26 also suggests 835 

that the detection accuracy is not very sensitive to the parameter. There is a wide range of parameter 836 

A able to obtain both producer’s accuracy and user’s accuracy higher than 0.95. Users can tune 837 

these two parameters according to their specific applications. For example, studies using time 838 

series to model land surface parameters, such as forest biomass and crop yield, are very sensitive 839 

to clouds, even the extremely thin clouds. These studies may hope to mask out all possible clouds 840 

and accept some commission errors, so smaller values of parameter A and B should be used. In 841 

addition, ATSA also use the statistics of each image in the time series to determine some parameters 842 

to increase the adaptability of ATSA. For example, the HOT transformation has been used in many 843 

cloud screening methods, such as MFC (Li et al., 2017) and Fmask (Zhu and Woodcock, 2012). 844 

However, these methods apply one HOT formula to all images. For instance, both MFC and Fmask 845 

use HOT=Bblue-0.5Bred for all images. However, the coefficients in the HOT transformation vary 846 
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from scene-to-scene, so it is necessary to estimate the HOT parameter for individual images (Chen 847 

et al., 2016; Zhang et al., 2002). ATSA regresses the coefficients in HOT transformation model in 848 

each image by an automated strategy which can get optimal cloud index images. 849 

 850 

Fig. 26. User’s and producer’s accuracy of cloud detection for the Landsat-4 MSS image 851 

DOY200 in the Puerto Rico site using different values of parameter A 852 

 853 

        Third, ATSA uses the minimal clear observations in image time series over cloudy regions to 854 

ensure accurate cloud and shadow masking without fitting a time series model of these 855 

observations. For both cloud and shadow detection, there are two hierarchies in ATSA. In the first 856 

hierarchy, ATSA selects samples from all images in the time series for optimizing the class centers 857 

in the K-means classifier. As we know, it is quite common that image scenes are totally covered 858 

by clouds. If the K-means classifier (K=2 or 3) is applied to each individual image, it cannot detect 859 

all clouds in a totally cloud-covered image. In the second hierarchy, ATSA only uses “clear” 860 

observations in the time series to estimate the adaptive threshold, and further detect clouds and 861 

shadows omitted in the first hierarchy. Another multi-temporal method, Tmask, also uses clear 862 

observations in the time series to refine the initial cloud mask from Fmask. It can detect more thin 863 

clouds than Fmask (Zhu and Woodcock, 2014). However, Tmask is not appropriate in our test sites 864 
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in cloudy regions. Fig. 27 shows the number of clear observations of individual pixels in the time-865 

series data of Hong Kong and Puerto Rico site. We can see that both sites have considerable pixels 866 

with fewer than 6 clear observations. The clear observations are not enough for Tmask (15 clear 867 

observations are recommended) to accurately estimate the parameters in the time series model, 868 

leading to misclassifying cloudy pixels as clear pixels (Foga et al., 2017). Unlike Tmask, ATSA 869 

does not fit a time series model using many clear observations. It can be an alternative to Tmask 870 

for screening clouds in time-series data of cloudy regions or short time series (e.g., one year) which 871 

is unlikely to have enough clear observations.  872 

 873 
Fig. 27. Number of clear observations of individual pixel in the Landsat-8 time series at both 874 

Hong Kong and Puerto Rico sites.  875 

 876 

        There are also some limitations in ATSA. First, ATSA currently does not have a snow 877 

detection module. In tropical and subtropical regions, which are among the cloudiest regions (Ju 878 

and Roy, 2008), images in these regions do not have snow in all seasons except at the highest 879 

elevations. If the images include snow, ATSA is likely to detect snow as clouds (see Jan.26 image 880 

in Fig. 24). This outcome may be acceptable in many applications, such as vegetation studies, in 881 

which, like clouds, snow would often be excluded. Actually, most current algorithms often confuse 882 
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snow and clouds even if they have a snow detection module, like the Fmask results shown in Fig. 883 

13 and Fig. 24. If more powerful snow detection methods are developed in the future, they can be 884 

integrated with ATSA. Second, although the HOT transformation can suppress the pixel values of 885 

various land covers (also see an experiment in a desert landscape shown in the Supplementary 886 

Data), the very bright pixels may be identified as clouds. A recent study proposed an iterative HOT 887 

(IHOT) algorithm which can better suppress surface reflectance (Chen et al., 2016), but it needs 888 

more computing time. IHOT can be used as an alternative to HOT if the computing time is not a 889 

restriction factor. Third, land cover changes may happen in the time series. It may bring temporal 890 

variability in the HOT time series which could further affect the cloud detection by ATSA. An 891 

experiment reported in the Supplementary Data shows that ATSA may be not affected by many 892 

types of land cover changes, but other methods (e.g. Tmask) which can model land cover change 893 

may obtain better results than ATSA when substantial land cover changes exist. Fourth, ATSA may 894 

omit some cloud shadows on water surfaces or cloud shadows on the land surface that are 895 

extremely thin. Omission of cloud shadows on water surfaces may not affect mapping the water 896 

bodies, but it may affect water quality modeling. Thin cloud shadow on land surfaces may also 897 

affect quantitative information retrieval. Omission errors from missed cloudy pixels are the most 898 

common errors in cloud shadow masking methods (Foga et al., 2017); however, more accurate 899 

cloud detection with ATSA in the types of landscapes tested should reduce this error. These errors 900 

can be corrected by a further manual checking. Fifth, ATSA requires a time series, albeit with fewer 901 

dates than existing methods. Last, due to the limitation of resources and support, ATSA was tested 902 

in several typical sites and on data sets from three satellite sensors. More comparison and 903 

validation are needed, and they are our future studies. Due to its simple principles, ATSA has an 904 

acceptable efficiency for processing time-series data. ATSA only used 11 minutes and 13 minutes 905 
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for the Landsat-8 time series in Hong Kong and Puerto Rico sites respectively (program coded in 906 

interactive data language and run on a windows laptop with a 2.50GHz CPU and 8 GB RAM). We 907 

welcome other researchers to test ATSA in more areas and different data sets. The code of ATSA 908 

is available upon request.  909 

        In conclusion, a new cloud and cloud shadow screening method, ATSA, was developed in 910 

this study. Its target is time series optical images in cloudy regions. ATSA is a valuable supplement 911 

to the family of cloud and cloud shadow masking algorithms. It will support studies of land surface 912 

dynamics using dense optical time series, such as studies of forest phenology in tropical regions 913 

using Landsat or Sentinel-2 images.  914 
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