Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/77829
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorDu, Qen_US
dc.creatorJu, Len_US
dc.creatorLi, Xen_US
dc.creatorQiao, Zen_US
dc.date.accessioned2018-08-28T01:35:05Z-
dc.date.available2018-08-28T01:35:05Z-
dc.identifier.issn0021-9991en_US
dc.identifier.urihttp://hdl.handle.net/10397/77829-
dc.language.isoenen_US
dc.publisherAcademic Pressen_US
dc.rights© 2018 Elsevier Inc. All rights reserved.en_US
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Du, Q., Ju, L., Li, X., & Qiao, Z. (2018). Stabilized linear semi-implicit schemes for the nonlocal Cahn–Hilliard equation. Journal of Computational Physics, 363, 39-54 is available at https://doi.org/10.1016/j.jcp.2018.02.023en_US
dc.subjectEnergy stabilityen_US
dc.subjectFast Fourier transformen_US
dc.subjectGaussian kernelen_US
dc.subjectNonlocal Cahn–Hilliard equationen_US
dc.subjectNonlocal diffusion operatoren_US
dc.subjectStabilized linear schemeen_US
dc.titleStabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage39en_US
dc.identifier.epage54en_US
dc.identifier.volume363en_US
dc.identifier.doi10.1016/j.jcp.2018.02.023en_US
dcterms.abstractComparing with the well-known classic Cahn–Hilliard equation, the nonlocal Cahn–Hilliard equation is equipped with a nonlocal diffusion operator and can describe more practical phenomena for modeling phase transitions of microstructures in materials. On the other hand, it evidently brings more computational costs in numerical simulations, thus efficient and accurate time integration schemes are highly desired. In this paper, we propose two energy-stable linear semi-implicit methods with first and second order temporal accuracies respectively for solving the nonlocal Cahn–Hilliard equation. The temporal discretization is done by using the stabilization technique with the nonlocal diffusion term treated implicitly, while the spatial discretization is carried out by the Fourier collocation method with FFT-based fast implementations. The energy stabilities are rigorously established for both methods in the fully discrete sense. Numerical experiments are conducted for a typical case involving Gaussian kernels. We test the temporal convergence rates of the proposed schemes and make a comparison of the nonlocal phase transition process with the corresponding local one. In addition, long-time simulations of the coarsening dynamics are also performed to predict the power law of the energy decay.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of computational physics, 15 June 2018, v. 363, p. 39-54en_US
dcterms.isPartOfJournal of computational physicsen_US
dcterms.issued2018-06-15-
dc.identifier.isiWOS:000429576400004-
dc.identifier.scopus2-s2.0-85042676643-
dc.identifier.rosgroupid2017003135-
dc.description.ros2017-2018 > Academic research: refereed > Publication in refereed journalen_US
dc.description.validate201808 bcrcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0372-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6824171-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Qiao_Stabilized_Linear_Semi-Implicit.pdfPre-Published version1.76 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

121
Last Week
0
Last month
Citations as of May 5, 2024

Downloads

62
Citations as of May 5, 2024

SCOPUSTM   
Citations

76
Last Week
0
Last month
Citations as of May 3, 2024

WEB OF SCIENCETM
Citations

73
Last Week
0
Last month
Citations as of May 2, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.