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Abstract

Comparing with the well-known classic Cahn-Hilliard equation, the nonlocal
Cahn-Hilliard equation is equipped with a nonlocal diffusion operator and can de-
scribe more practical phenomena for modeling phase transitions of microstructures
in materials. On the other hand, it evidently brings more computational costs in nu-
merical simulations, thus efficient and accurate time integration schemes are highly
desired. In this paper, we propose two energy-stable linear semi-implicit methods
with first and second order temporal accuracies respectively for solving the nonlocal
Cahn-Hilliard equation. The temporal discretization is done by using the stabiliza-
tion technique with the nonlocal diffusion term treated implicitly, while the spatial
discretization is carried out by the Fourier collocation method with FFT-based fast
implementations. The energy stabilities are rigorously established for both meth-
ods in the fully discrete sense. Numerical experiments are conducted for a typical
case involving Gaussian kernels. We test the temporal convergence rates of the pro-
posed schemes and make a comparison of the nonlocal phase transition process with
the corresponding local one. In addition, long-time simulations of the coarsening
dynamics are also performed to predict the power law of the energy decay.
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1 Introduction

Mesoscopic descriptions of phase transition are often modeled under the assumption
that the evolution of the order parameter follows a gradient flow of the free energy with
respect to certain metric. In the case of binary materials, a particular form of the free
energy functional could be written as follows [6]

E(u) =

∫
Ω

(
F (u(x)) +

ε2

4

∫
Ω
J(x− y)(u(x)− u(y))2 dy

)
dx, (1.1)
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where ε > 0 is an interface parameter, Ω ⊂ Rd is a spatial domain (d = 1, 2, or 3), and
u(x) represents the scaled concentration or an order parameter of one component. The
first term of the integrand in (1.1) represents the homogeneous free energy density and
F is usually a double well function. The second term plays a role as the interaction en-
ergy density, representing the long-range interactions between atoms at different lattice
sites, where J denotes an interaction kernel. In [32], the integral form of the nonlocal
interactions has been attributed back to van der Waals [41]. The nonlocal Cahn-Hilliard
(NCH) equation to be considered in this paper is resulted from the energetic variation
of the energy functional (1.1) with F a double well quartic function in the H−1 Sobolev
space. The specific form of the model equation as well as some assumptions on the
kernel will be given in the next section.

It is well-known that the classic Cahn-Hilliard equation [10] is one of typical sys-
tems of the phase field models and has been successfully aplied to describe the phase
separations occurring in mixtures consisting of small molecules and some other interface
problems involving mass-conserved order parameters. Recently, the NCH equation has
attracted more and more attentions and used in many fields ranging from physics, ma-
terials science to finance and image processing. In materials science, the NCH equation
and other related equations arise as mesoscopic models of interacting particle systems
[2, 25] and are taken to model phase transitions [19]. In the dynamic density functional
theory [1, 2], the interaction kernel J is the two-particle direct correlation function and
u represents the mesoscopic particle density. In mathematical models of finance, the
kernel arises from an expectation taken with respect to a particular measure used in op-
tion pricing [31]. In models for image segmentation with the NCH equation, the kernel
is interpreted as the attracting force [20].

There have been many works on both mathematical and numerical aspects for the
nonlocal models. On the mathematical analysis, the well-posedness of the NCH equa-
tions equipped with Neumann or Dirichlet boundary condition were investigated by
Bates and Han [7, 8] by assuming the integrability of the kernel. Guan et al. pointed
out in [23] that the existence and uniqueness of the periodic solution to the NCH equation
may be established using the similar techniques. Fife [19] surveyed some parabolic-like
evolution equations including nonlocal and pattern-forming problems and made a brief
comparison between the local and nonlocal equations. To develop a general framework
of nonlocal models, Du et al. [14] analyzed a class of nonlocal diffusion problems with
volume constrained boundary conditions, which are the nonlocal versions of classic dif-
fusion problems with local boundary constraints, and a number of examples ranging
from continuum mechanics to graph theory were showed to be special cases of the non-
local models. On the numerical discretization, Bates et al. [5] developed an L∞ stable
and convergent numerical scheme for the nonlocal Allen-Cahn equation, the L2 gradient
flow with respect to (1.1), by treating the nonlinear and nonlocal terms explicitly. A
similar approach was used on the nonlocal Allen-Cahn type problem coupled with a
heat equation [3] and an L∞ stable and convergent numerical scheme was obtained. For
the nonlocal diffusion models with variable boundary conditions, finite element approx-
imations were addressed in [38, 44]. To illustrate the limit behavior of the computed
solution of the nonlocal model to the exact solution of the corresponding local one,
Tian and Du [39] proposed the concept on asymptotical compatibility, and the spectral-
Galerkin approximations of the nonlocal Allen-Cahn equations were then proved to be
asymptotically compatible.

Due to the energetic variational structure of the underlying model, the energy of
the exact solutions to the NCH equations decreases in time. Thus, a significant issue
in numerical simulations of the the NCH equations is to develop algorithms inheriting
this property at the discrete level. The algorithms of this type are usually called to
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be energy stable. Energy stability has been widely investigated for numerical schemes
of a family of classic PDE-based phase field models, such as convex splitting schemes
[33, 35, 42], stabilized schemes [37, 43], exponential time differencing schemes [26, 27],
auxiliary variable methods [34] and so on. It is interesting to study if similar analysis can
be applied to nonlocal phase field models due to the lack of the high-order diffusion term.
As we will show later, the NCH equation could be obtained by replacing the Laplacian
operator in the classic Cahn-Hilliard equation by a nonlocal diffusion operator resulted
from the energetic variation of the nonlocal interaction term in the energy functional
(1.1), thus it seems natural to consider the convex splitting schemes under the framework
exploited by Eyre [18] for the local Cahn-Hilliard equation. The convex splitting schemes
are unconditionally energy stable but often have to be solved iteratively at each time step
due to implicit treatment of the nonlinearity. Thus, when the nonlocal term is put in the
implicit part, one must compute it in each nonlinear iteration at each time step, which
increases the computational cost. Based on this observation, Guan et al. [21, 22, 23]
constructed a convex splitting scheme in an alternative way by treating the nonlinear
term implicitly and putting the nonlocal term into the explicit part. Their scheme allows
one to evaluate the nonlocal term explicitly only once at each time step, which is a good
improvement over standard schemes, but the iterations are still inevitable.

A major motivation for us to study stabilized linear schemes for the NCH equations
lies in the fact that, if we have linear schemes with the nonlocal term in the implicit
level, then we are able to solve the fully discrete system efficiently in the frequency space
via the spectral discretization and the fast Fourier transform (FFT) technique. In this
paper, we will present and analyze two linear schemes for solving the NCH equation by
using stabilized semi-implicit time discretization combined with the Fourier collocation
method for spatial approximation. Such methods have been studied by many researchers
in other contexts. For example, semi-implicit time-stepping was used by Chen and Shen
[11] for phase field simulations. Stabilized method was also used by Xu and Tang [43] to
develop energy stable schemes for the epitaxial growth model. A first order linear semi-
implicit scheme was given by adding a stabilization term of the form A∆h(un+1

h − unh),
where the stabilizing parameter A depends nonlinearly on the numerical solutions. Tang
et al. [24] also applied the same technique on the classic Cahn-Hilliard equation. and
again the L∞ bound assumption on un+1

h was implicitly used to make A controllable.
Similar approaches were utilized on the Allen-Cahn and Cahn-Hilliard equations [37] by
assuming the Lipschitz continuity of the derivative of the potential. The linear convex
splitting scheme presented in [12] for the epitaxial growth model was essentially a first
order stabilized semi-implicit scheme with the stabilizer equal to one. In the recent
works [28, 29], the technical restrictions on A were removed and a more reasonable
stability theory was established for phase field models like the Cahn-Hilliard equations.
The work in this paper is motivated partly by the fact that the stabilized semi-implicit
schemes mentioned above are linear (thus more efficient than nonlinear schemes) and
energy stable. To the best of our knowledge, this represents the first investigation on
the application of the linear stabilization strategy to the nonlocal phase field models.

The rest of the paper is organized as follows. In Section 2, we briefly introduce
the NCH equation and illustrate its connection to the classic Cahn-Hilliard equation.
Spectral collocation and definitions of some discrete spatial operators are given in Section
3. In Section 4, the first and second order stabilized semi-implicit schemes are developed
and analyzed; in particular, their energy stabilities are proved rigorously in the fully
discrete form. Note that although the analysis in Sections 3 and 4 are done only for
the 2D case, similar results can be obtained for the 1D and 3D cases without any
extra essential difficulties. In Section 5, we first specialize the nonlocal model to the
one involving a class of Gaussian kernels parameterized by a horizon number δ. Under
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different values of (ε, δ), we numerically test temporal accuracies of the proposed schemes
and compare the nonlocal phase transition processes with the corresponding local ones.
In addition, long-time simulations of the coarsening dynamics are also performed to
predict the power law of the energy decay rate. Finally, some concluding remarks are
given in Section 6.

2 The nonlocal Cahn-Hilliard equation

We now give a brief review of the NCH equation associated with the energy functional
(1.1) and its connection to the classic Cahn-Hilliard equation. Let us consider Ω =
d∏
i=1

(−Xi, Xi), a rectangular cell in Rd. It is assumed throughout the paper that the

kernel J always satisfies the following conditions:

(a) J(x) ≥ 0 for any x ∈ Ω,
(b) J(−x) = J(x) for any x ∈ Ω,
(c) J is Ω-periodic,

(d)
1

2

∫
Ω
J(x)|x|2 dx = 1.

Note that the condition (d) means that J has a finite second moment in Ω. Denote by
‖ · ‖Lp the spatial Lp(Ω) norm for 1 ≤ p ≤ ∞ and by Lpper(Ω) the space of all periodic
functions in Lp(Ω). For simplicity, the usual L2 norm and L2 inner product are denoted
by ‖ · ‖ and (·, ·), respectively.

2.1 Nonlocal operator and nonlocal Cahn-Hilliard equation

Let us define the nonlocal linear operator L : L2
per(Ω)→ L2

per(Ω) as

L : v(x) 7→
∫

Ω
J(x− y)(v(x)− v(y)) dy, (2.1)

then we know that L is self-adjoint and positive semi-definite under the above assump-
tions. Moreover, by acting L on exp(ik̃ · x) where k̃ = (k̃1, . . . , k̃d) with k̃i = kiπ/Xi

and ki ∈ Z, the basis functions on L2
per(Ω), we can obtain the eigenvalues {Λk : k ∈ Zd}

of L given by

Λk =

∫
Ω
J(x)

(
1− exp(−ik̃ · x)

)
dx =

∫
Ω
J(x)

(
1− cos(k̃ · x)

)
dx ≥ 0. (2.2)

By some simple calculations, using the condition (b) of J , we can rewrite the energy
(1.1) as

E(u) =

∫
Ω
F (u) dx +

ε2

2
(Lu, u). (2.3)

The nonlocal Cahn-Hilliard equation under consideration is the H−1 gradient flow with
respect to the energy (2.3) with F (u) = 1

4(u2 − 1)2, taking the form

ut = ∆(u3 − u+ ε2Lu), (x, t) ∈ ΩT , (2.4)

where T > 0 is the terminal time, ΩT = Ω×(0, T ], and the unknown u(x, t) is subject to
the initial condition u(x, 0) = u0(x) for any x ∈ Ω and the periodic boundary condition.

If J is further integrable, then J ∗ 1 =

∫
Ω
J(x) dx > 0 is a positive constant and

Lv = (J ∗ 1)v − J ∗ v, (2.5)
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where

(J ∗ v)(x) =

∫
Ω
J(x− y)v(y) dy =

∫
Ω
J(y)v(x− y) dy

is exactly the periodic convolution [23]. In this case, the equation (2.4) can be written
as

ut = ∇ · (a(u)∇u)− ε2∆J ∗ u,

where a(u) = 3u2 − 1 + ε2J ∗ 1 is referred as the diffusive mobility. If

β := ε2J ∗ 1− 1 > 0, (2.6)

which gives a(u) > 0, then the equation (2.4) becomes diffusive and the solution becomes
regular in time; otherwise, the solution may exhibit some singular behaviors. In order
to ensure the successful computations of the FFT-based implementation without any
breakdowns or unexpected oscillations, in this paper, we make some technical assump-
tions that there is no singularity existing in the solutions, and the kernel J is integrable
with the condition (2.6) satisfied.

2.2 Connection to the classic Cahn-Hilliard equation

The well-known classic Cahn-Hilliard equation [10] is given by

ut = ∆(u3 − u− ε2∆u), (2.7)

and the corresponding local energy functional by

Elocal(u) =

∫
Ω

(1

4
(u2 − 1)2 +

ε2

2
|∇u|2

)
dx. (2.8)

To illustrate the relationship between the local and nonlocal energies, we can approxi-
mate the interaction energy density using the Taylor (or Landau, as often in the physics
literature) expansion [4, 32], the periodicity of u and J , and the conditions (b)-(d) of J
to find

ε2

4

∫
Ω
J(x− y)(u(x)− u(y))2 dy =

ε2

4

∫
Ω
J(y)(u(x)− u(x + y))2 dy

≈ ε2

4

∫
Ω
J(y)|y|2|∇u(x)|2 dy =

ε2

2
|∇u(x)|2.

Therefore, the NCH equation (2.4) comes from replacing the second −∆ operator in the
equation (2.7) by the nonlocal diffusion operator L. A more rigorous derivation can be
given by introducing a spatial interaction scale, say a nonlocal horizon parameter δ, in
J and examining the limit of the nonlocal operator as δ → 0 to obtain the classic Lapla-
cian operator, see for instance Proposition 5.1 given later and also additional related
discussions in [9, 16, 30].

3 Spectral collocation approximations of spatial operators

In this section, we will present some notations and lemmas on the spectral collo-
cation approximations for some spatial operators in the two-dimensional space with
Ω = (−X,X)× (−Y, Y ).

Let Nx and Ny be two even numbers. The Nx × Ny mesh Ωh of the domain Ω is
a set of nodes (xi, yj) with xi = −X + ihx, yj = −Y + jhy, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny,
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where hx = 2X/Nx and hy = 2Y/Ny are the uniform mesh sizes in each dimension. Let
h = max{hx, hy}. We define the index sets

Sh = {(i, j) ∈ Z2 | 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny},

Ŝh =
{

(k, l) ∈ Z2
∣∣∣ − Nx

2
+ 1 ≤ k ≤ Nx

2
, −Ny

2
+ 1 ≤ l ≤ Ny

2

}
.

All of the periodic grid functions defined on Ωh are denoted by Mh, that is,

Mh = {f : Ωh → R | fi+mNx,j+nNy = fij for any (i, j) ∈ Sh and (m,n) ∈ Z2}.

For any f, g ∈ Mh and f = (f1, f2)T , g = (g1, g2)T ∈ Mh ×Mh, the discrete L2 inner
product 〈·, ·〉, discrete L2 norm ‖ · ‖2, and discrete L∞ norm ‖ · ‖∞ are respectively
defined by

〈f, g〉 = hxhy
∑

(i,j)∈Sh

fijgij , 〈f , g〉 = hxhy
∑

(i,j)∈Sh

(f1
ijg

1
ij + f2

ijg
2
ij),

‖f‖2 =
√
〈f, f〉, ‖f‖2 =

√
〈f ,f〉,

‖f‖∞ = max
(i,j)∈Sh

|fij |, ‖f‖∞ = max
(i,j)∈Sh

√
f1
ij + f2

ij .

3.1 Discrete gradient, divergence and Laplace operators

For a function f ∈Mh, the 2D discrete Fourier transform f̂ = Pf is defined omponen-
twisely [36, 40] by

f̂kl =
∑

(i,j)∈Sh

fij exp
(
− i

kπ

X
xi

)
exp

(
− i

lπ

Y
yj

)
, (k, l) ∈ Ŝh. (3.1)

The function f can be reconstructed via the corresponding inverse transform f = P−1f̂
with components given by

fij =
1

NxNy

∑
(k,l)∈Ŝh

f̂kl exp
(

i
kπ

X
xi

)
exp

(
i
lπ

Y
yj

)
, (i, j) ∈ Sh. (3.2)

Let M̂h = {Pf | f ∈Mh} and define the operators D̂x and D̂y on M̂h as

(D̂xf̂)kl =
(kπi

X

)
f̂kl, (D̂yf̂)kl =

( lπi

Y

)
f̂kl, (k, l) ∈ Ŝh,

then the Fourier spectral approximations to the first and second order partial derivatives
can be represented as

Dx = P−1D̂xP, Dy = P−1D̂yP,

D2
x = P−1D̂2

xP, D2
y = P−1D̂2

yP.

For any f ∈ Mh and f = (f1, f2)T ∈ Mh ×Mh, the discrete gradient, divergence and
Laplace operators are given respectively by

∇hf =

(
Dxf

Dyf

)
, ∇h · f = Dxf

1 +Dyf
2,

∆hf = D2
xf +D2

yf.

It is easy to prove the following result:

Lemma 3.1. For any functions f, g ∈ Mh and g ∈ Mh ×Mh, we have the discrete
integration by parts formulas

〈f,∇h · g〉 = −〈∇hf, g〉, 〈f,∆hg〉 = −〈∇hf,∇hg〉 = 〈∆hf, g〉.
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3.2 Discrete convolutions

To define the discrete convolutions, we consider the kernel function set

Kh = {ψ : Ωh,0 → R |ψi+mNx,j+nNy = ψij for any (i, j) ∈ Sh and (m,n) ∈ Z2},

where Ωh,0 = {(ihx, jhy) | (i, j) ∈ Sh} is the mesh on the domain (0, 2X) × (0, 2Y ). A
discrete transform and its inversion of a function ψ ∈ Kh could be defined similarly via
(3.1) and (3.2) by replacing xi and yj by ihx and jhy, respectively. Actually, Kh is
equivalent toMh due to the periodicity of their elements, and we consider the functions
from Kh as the kernels just for convenience of notations.

For any ψ ∈ Kh and f ∈ Mh, the discrete convolution ψ ∗© f ∈ Mh is defined
componentwisely by

(ψ ∗© f)ij = hxhy
∑

(m,n)∈Sh

ψi−m,j−nfmn, (i, j) ∈ Sh.

Then, direct calculations yield the following formula:

Lemma 3.2. For any functions ψ ∈ Kh and f ∈Mh, we have

(ψ ∗© f)ij =
hxhy
NxNy

∑
(k,l)∈Ŝh

ψ̂klf̂kl exp
(

i
kπ

X
xi

)
exp

(
i
lπ

Y
yj

)
, (i, j) ∈ Sh,

which means
(ψ̂ ∗© f)kl = hxhyψ̂klf̂kl, (k, l) ∈ Ŝh.

Especially, by setting f ≡ 1 on Ωh, we have

ψ ∗© 1 ≡ hxhyψ̂00 = hxhy
∑

(m,n)∈Sh

ψmn.

3.3 Discrete nonlocal diffusion operator

Given an integrable kernel J satisfying the assumptions (a)–(c), we can define the action
of the nonlocal operator L on any grid function f ∈ Mh through the use of Lh =
P−1L̂hP by

L̂hf̂kl = Λklf̂kl, (k, l) ∈ Ŝh,
where Λkl are the eigenvalues of L given by (2.2). However, we see that except some
special cases, one can hardly evaluate the integrals involved in (2.2) exactly, thus we
need to find a more practical approach to define the discrete version of the nonlocal
operator L in space.

First, let us define the approximating nonlocal operator L̃ on L2
per(Ω) by

L̃ exp
(

i
kπ

X
x
)

exp
(

i
lπ

Y
y
)

= λkl exp
(

i
kπ

X
x
)

exp
(

i
lπ

Y
y
)
, (k, l) ∈ Z2,

where

λkl = hxhy
∑

(i,j)∈Sh

J(xi, yj)

(
1− exp

(
− i

kπ

X
xi

)
exp

(
− i

lπ

Y
yj

))
, (3.3)

which is actually an approximation of (2.2) by using the periodic rectangular quadrature
rule for the related integrals. Next, we define the discrete nonlocal diffusion operator
Lh on any grid function f ∈Mh by Lh = P−1L̂hP with

L̂hf̂kl = λklf̂kl, (k, l) ∈ Ŝh,

where λkl’s are given by (3.3). Some important properties of Lh are summarized below.
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Lemma 3.3. The operator Lh has the following properties:
(i) the eigenvalues of Lh are λkl = hxhy(Ĵ00 − Ĵkl) ≥ 0, (k, l) ∈ Ŝh;
(ii) Lh commutes with ∆h and is self-adjoint and positive semi-definite;
(iii) for any f ∈Mh, we have Lhf = (J ∗© 1)f − J ∗© f .

Proof. Using the notations of the discrete Fourier transforms, we can express (3.3) as

λkl = hxhy(Ĵ00 − Ĵkl).

On the other hand, since J is real and even, we know that Ĵkl and λkl are also real and
even with respect to (k, l) ∈ Ŝh. So we can rewrite (3.3) as

λkl = hxhy
∑

(i,j)∈Sh

J(xi, yj)
(

1− cos
(kπ
X
xi +

lπ

Y
yj

))
.

Since Jij ≥ 0 due to the assumption (a), we obtain λkl ≥ 0, which implies directly the
positive semi-definiteness of Lh.

We know from the definition of the discrete operator Lh that both Lh and ∆h can
be diagonalized by the transform P , which implies that Lh commutes with ∆h. The
property (iii) is the direct consequence of using Lemma 3.2.

Remark. In Lemma 3.3, the property (i) implies that the eigenvalues {λkl} can be
computed efficiently via the FFT technique, and the property (iii) gives us an equivalent
definition of Lh, which is exactly the discrete version of (2.5).

4 Stabilized linear semi-implicit schemes

In this section, we construct and analyze first and second order (in time) stabilized
semi-implicit fully discrete schemes for solving the NCH equation (2.4), respectively.
The spectral collocation approximations defined in Section 3 are used for spatial dis-
cretization. Given a positive integer Nt, let us partition the time interval [0, T ] by
{tn = nτ}Ntn=0 with the time step size τ = T/Nt.

4.1 First order scheme

The first order stabilized linear semi-implicit (SSI1) scheme of the NCH equation (2.4)
is constructed as follows: for 0 ≤ n ≤ Nt − 1, find un+1

h = (un+1
ij ) ∈Mh such that

un+1
h − unh = τ∆hw

n+1
h , (4.1a)

wn+1
h = (ε2Lh +AIh)un+1

h + (unh)3 − (A+ 1)unh, (4.1b)

with u0
h = (u0

ij) ∈ Mh given by the initial data, A > 0 a stabilization constant, and
Ih the identity operator. The SSI1 scheme (4.1) is obtained by treating the nonlocal
diffusion term in (2.4) implicitly and the nonlinear potential term explicitly, and adding
a stabilizing term A∆h(un+1

h − unh) for the sake of stability. The following proposition
gives us the unique solvability of the scheme (4.1) and the property of mass conservation
in the discrete version.

Proposition 4.1 (Solvability and mass conservation of the SSI1 scheme). For any
τ > 0, the SSI1 scheme (4.1) has a unique solution un+1

h ∈ Mh for given unh ∈ Mh.
Moreover, 〈un+1

h − unh, 1〉 = 0 for 0 ≤ n ≤ Nt − 1.
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Proof. The SSI1 scheme (4.1) could be rewritten as

[Ih − τ∆h(ε2Lh +AIh)]un+1
h = unh + τ∆h[(unh)3 − (A+ 1)unh]. (4.2)

Since Lh commutes with ∆h, the unique solvability is obvious due to the positive defi-
niteness of Ih − τ∆h(ε2Lh +AIh). Taking the discrete L2 inner product of (4.1a) with
v ≡ 1 gives us 〈un+1

h − unh, 1〉 = 0.

According to the definitions of discrete spatial operators presented in the previous
section, the unique solution to (4.2) (i.e., (4.1)), can be computed in the frequency space
via

ûn+1
kl =

ûnkl − τ(k2 + l2)(q̂nkl − (A+ 1)ûnkl)

1 + τ(k2 + l2)(ε2λkl +A)
,

with qnh = (unh)3 and {λkl} being the eigenvalues of Lh given by (3.3).
Now we consider the energy stability of the SSI1 scheme (4.1). Define a discrete

version of the energy (2.3) as

Eh(uh) =
1

4
‖(uh)2‖22 −

1

2
‖uh‖22 +

1

4
|Ω|+ ε2

2
〈Lhuh, uh〉, ∀ uh ∈Mh, (4.3)

then we have the following result for the SSI1 scheme:

Theorem 4.2 (Energy stability of the SSI1 scheme). For any τ > 0, it holds that

Eh(un+1
h ) + τ‖∇hwn+1

h ‖22 +Rh(unh, u
n+1
h ) = Eh(unh), 0 ≤ n ≤ Nt − 1, (4.4)

where

Rh(unh, u
n+1
h ) =

1

2
〈Lh(un+1

h − unh), un+1
h − unh〉

+ 〈A− 1

2
(unh)2 − 1

4
(un+1
h + unh)2 +

1

2
, (un+1

h − unh)2〉.

Moreover, the energy is nonincreasing for any τ > 0, i.e., Eh(un+1
h ) ≤ Eh(unh), provided

that the constant A satisfies

A ≥ max
(i,j)∈Sh

{1

2
(unij)

2 +
1

4
(un+1
ij + unij)

2 − 1

2

}
. (4.5)

Proof. Taking the discrete L2 inner product of (4.1a) with wn+1
h leads to

〈un+1
h − unh, wn+1

h 〉 = τ〈∆hw
n+1
h , wn+1

h 〉 = −τ‖∇hwn+1
h ‖22. (4.6)

Taking the discrete L2 inner product of (4.1b) with un+1
h − unh leads to

〈wn+1
h , un+1

h − unh〉 = ε2〈Lhun+1
h , un+1

h − unh〉+ 〈(unh)3 − unh, un+1
h − unh〉+A‖un+1

h − unh‖22.

Using the identity a · (a− b) = 1
2 |a|

2 − 1
2 |b|

2 + 1
2 |a− b|2, we have

〈Lhun+1
h , un+1

h − unh〉 =
1

2
〈Lhun+1

h , un+1
h 〉 − 1

2
〈Lhunh, unh〉+

1

2
〈Lh(un+1

h − unh), un+1
h − unh〉.

By some simple calculations, we can find that

〈(unh)3 − unh, un+1
h − unh〉 =

1

4
‖(un+1

h )2‖22 −
1

4
‖(unh)2‖22 −

1

2
‖un+1

h ‖22 +
1

2
‖unh‖22

− 〈1
2

(unh)2 +
1

4
(un+1
h + unh)2 − 1

2
, (un+1

h − unh)2〉.

9



Then, we obtain

〈wn+1
h , un+1

h − unh〉 =
ε2

2
〈Lhun+1

h , un+1
h 〉 − ε2

2
〈Lhunh, unh〉+

ε2

2
〈Lh(un+1

h − unh), un+1
h − unh〉

+
1

4
‖(un+1

h )2‖22 −
1

4
‖(unh)2‖22 −

1

2
‖un+1

h ‖22 +
1

2
‖unh‖22

+ 〈A− 1

2
(unh)2 − 1

4
(un+1
h + unh)2 +

1

2
, (un+1

h − unh)2〉

= Eh(un+1
h )− Eh(unh) +Rh(unh, u

n+1
h ). (4.7)

Combining (4.6) and (4.7), we obtain (4.4). Since Lh is positive semi-definite, we have

Rh(unh, u
n+1
h ) ≥ 〈A− 1

2
(unh)2 − 1

4
(un+1
h + unh)2 +

1

2
, (un+1

h − unh)2〉.

Under the condition (4.5), we have Rh(unh, u
n+1
h ) ≥ 0.

Remark. The condition (4.5) implies an assumption on the uniform discrete L∞ bound-
ness of the numerical solution, while such an assumption is necessary to show the energy
stability, as is claimed in [24]. Another way to keep the stability, adopted in [37], is to
assume the Lipschitz continuity of the derivative of the potential F , namely, |F ′′(u)| ≤ L
for some L > 0. For the case with the quartic potential, such two assumptions are equiv-
alent to each other and inevitable in the analysis for the stability and convergence of
the stabilized schemes. Though there are some new techniques [28, 29] removing such
assumptions for the case of local Cahn-Hilliard model, whether they could be applied on
the nonlocal models is still open. Fortunately, in most practical simulations, the com-
puted solutions are always bounded uniformly in the space-time mesh, so our theoretical
results are still valid in this version.

4.2 Second order scheme

The second order stabilized linear semi-implicit (SSI2) scheme for the NCH equation
(2.4) is constructed as follows: for 1 ≤ n ≤ Nt− 1, find un+1

h = (un+1
ij ) ∈Mh such that

un+1
h − unh = τ∆hw

n+ 1
2 , (4.8a)

w
n+ 1

2
h = (ε2Lh +AIh)

(3

4
un+1
h +

1

4
un−1
h

)
+

3

2
(unh)3 − 1

2
(un−1
h )3 − (A+ 1)

(3

2
unh −

1

2
un−1
h

)
, (4.8b)

with u0
h = (u0

ij) given by the initial data and u1
h = (u1

ij) computed by the SSI1 scheme
(4.1) with n = 0. The SSI2 scheme (4.8) is equivalent to[

Ih −
3τ

4
∆h(ε2Lh +AIh)

]
un+1
h

= unh +
τ

4
∆h(ε2Lh +AIh)un−1

h

+ τ∆h

[3

2
(unh)3 − 1

2
(un−1
h )3 − (A+ 1)

(3

2
unh −

1

2
un−1
h

)]
,

which can be solved efficiently by using the FFT technique and updating in the frequency
space via

ûn+1
kl =

ûnkl − τ(k2 + l2)[1
4(ε2λkl +A)ûn−1

kl + (3
2 q̂
n
kl −

1
2 q̂
n−1
kl )− (A+ 1)(3

2 û
n
kl −

1
2 û

n−1
kl )]

1 + 3τ
4 (k2 + l2)(ε2λkl +A)

,
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with qnh = (unh)3 , qn−1
h = (un−1

h )3 and {λkl} given by (3.3). There is no essential
difference between the proofs of the unique solvability for the SSI1 and SSI2 schemes,
so we present the following result without proof.

Proposition 4.3 (Solvability and mass conservation of the SSI2 scheme). For any
τ > 0, the SSI2 scheme (4.8) has a unique solution un+1

h ∈Mh for given un−1
h , unh ∈Mh.

Moreover, 〈un+1
h − unh, 1〉 = 0 for 0 ≤ n ≤ Nt − 1.

For 1 ≤ n ≤ Nt, now let us define a modified discrete energy functional as

Eh(unh, u
n−1
h ) = Eh(unh) +

ε2

8
〈Lh(unh − un−1

h ), unh − un−1
h 〉+

3A+ 2

8
‖unh − un−1

h ‖22,

which is clearly a second order approximation of the original discrete energy Eh(unh)
defined in (4.3).

Theorem 4.4 (Energy stability of the SSI2 scheme). For any τ > 0, we have

Eh(un+1
h , unh) ≤ Eh(unh, u

n−1
h ) +A‖un+1

h − unh‖22, 1 ≤ n ≤ Nt − 1,

provided that the constant A satisfies

A ≥ max

{
1

3
max

(i,j)∈Sh

{
(unij)

2 + (un−1
ij )2 + (unij + un−1

ij )2
}
− 2,

max
(i,j)∈Sh

{1

2
(unij)

2 +
1

4
(un+1
ij + unij)

2
}}

. (4.9)

Proof. Taking the discrete L2 inner product of (4.8a) with wn+ 1
2 , we have

〈un+1
h − unh, wn+ 1

2 〉 = τ〈∆hw
n+ 1

2 , wn+ 1
2 〉 = −τ‖∇hwn+ 1

2 ‖22 ≤ 0. (4.10)

Taking the discrete L2 inner product of (4.8b) with un+1
h − unh, we obtain

〈wn+ 1
2 , un+1

h − unh〉 =
〈

(ε2Lh +AIh)
(3

4
un+1
h +

1

4
un−1
h

)
, un+1

h − unh
〉

+
1

2
〈3(unh)3 − (un−1

h )3, un+1
h − unh)

− A+ 1

2
(3unh − un−1

h , un+1
h − unh〉

= ε2
〈
Lh
(3

4
un+1
h +

1

4
un−1
h

)
, un+1

h − unh
〉

+ 〈(unh)3 − unh, un+1
h − unh〉 −

1

2
〈unh − un−1

h , un+1
h − unh〉

+
1

2
〈(unh)3 − (un−1

h )3, un+1
h − unh〉

+
3A

4
〈un+1
h − 2unh + un−1

h , un+1
h − unh〉, (4.11)

where the second term in the right-hand side of the last equality could be derived
identically to the proof of Theorem 4.2 as follows:

〈(unh)3 − unh, un+1
h − unh〉 =

1

4
‖(un+1

h )2‖22 −
1

4
‖(unh)2‖22 −

1

2
‖un+1

h ‖22 +
1

2
‖unh‖22

− 〈1
2

(unh)2 +
1

4
(un+1
h + unh)2, (un+1

h − unh)2〉+
1

2
‖un+1

h − unh‖22.
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By using the identity(3

4
a +

1

4
c
)
· (a− b) =

1

2
|a|2 − 1

2
|b|2 +

1

8
|a− b|2 − 1

8
|b− c|2 +

1

8
|a− 2b + c|2,

we get 〈
Lh
(3

4
un+1
h +

1

4
un−1
h

)
, un+1

h − unh
〉

=
1

2
〈Lhun+1

h , un+1
h 〉 − 1

2
〈Lhunh, unh〉+

1

8
〈Lh(un+1

h − unh), un+1
h − unh〉

− 1

8
〈Lh(unh − un−1

h ), unh − un−1
h 〉

+
1

8
〈Lh(un+1

h − 2unh + un−1
h ), un+1

h − 2unh + un−1
h 〉.

Using the identity a · (a − b) = 1
2 |a|

2 − 1
2 |b|

2 + 1
2 |a − b|2, we then obtain by setting

a = un+1
h − unh and b = unh − u

n−1
h that

〈un+1
h − 2unh + un−1

h , un+1
h − unh〉

=
1

2
‖un+1

h − unh‖22 −
1

2
‖unh − un−1

h ‖22 +
1

2
‖un+1

h − 2unh + un−1
h ‖22

and by setting a = un+1
h − unh and b = un+1

h − 2unh + un−1
h that

〈unh − un−1
h , un+1

h − unh〉

=
1

2
‖un+1

h − unh‖22 +
1

2
‖unh − un−1

h ‖22 −
1

2
‖un+1

h − 2unh + un−1
h ‖22.

Consequently we further obtain

〈wn+ 1
2 , un+1

h − unh〉

=
ε2

2
〈Lhun+1

h , un+1
h 〉 − ε2

2
〈Lhunh, unh〉+

ε2

8
〈Lh(un+1

h − unh), un+1
h − unh〉

− ε2

8
〈Lh(unh − un−1

h ), unh − un−1
h 〉

+
ε2

8
〈Lh(un+1

h − 2unh + un−1
h ), un+1

h − 2unh + un−1
h 〉

+
1

4
‖(un+1

h )2‖22 −
1

4
‖(unh)2‖22 −

1

2
‖un+1

h ‖22 +
1

2
‖unh‖22

− 〈1
2

(unh)2 +
1

4
(un+1
h + unh)2, (un+1

h − unh)2〉+
1

2
‖un+1

h − unh‖22

− 1

4
‖un+1

h − unh‖22 −
1

4
‖unh − un−1

h ‖22 +
1

4
‖un+1

h − 2unh + un−1
h ‖22

+
1

2
〈(unh)3 − (un−1

h )3, un+1
h − unh〉

+
3A

8
‖un+1

h − unh‖22 −
3A

8
‖unh − un−1

h ‖22 +
3A

8
‖un+1

h − 2unh + un−1
h ‖22

=
[
Eh(un+1

h ) +
ε2

8
〈Lh(un+1

h − unh), un+1
h − unh〉+

3A+ 2

8
‖un+1

h − unh‖22
]

−
[
Eh(unh) +

ε2

8
〈Lh(unh − un−1

h ), unh − un−1
h 〉+

3A+ 2

8
‖unh − un−1

h ‖22
]

+
[ε2

8
〈Lh(un+1

h − 2unh + un−1
h ), un+1

h − 2unh + un−1
h 〉

+
3A+ 2

8
‖un+1

h − 2unh + un−1
h ‖22 − 〈

1

2
(unh)2 +

1

4
(un+1
h + unh)2, (un+1

h − unh)2〉
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+
1

2
〈(unh)3 − (un−1

h )3, un+1
h − unh〉

]
,

thus we have

〈wn+ 1
2 , un+1

h − unh〉 = Eh(un+1
h , unh)− Eh(unh, u

n−1
h ) +Rh(un−1

h , unh, u
n+1
h ) (4.12)

with

Rh(un−1
h , unh, u

n+1
h )

≥ 3A+ 2

8
‖un+1

h − 2unh + un−1
h ‖22 +

1

2
〈(unh)3 − (un−1

h )3, un+1
h − unh〉

− 〈1
2

(unh)2 +
1

4
(un+1
h + unh)2, (un+1

h − unh)2〉.

Notice that

〈(unh)3 − (un−1
h )3, un+1

h − unh〉
= 〈(unh)2 + (un−1

h )2 + unhu
n−1
h , (unh − un−1

h )(un+1
h − unh)〉

=
1

4
〈(unh)2 + (un−1

h )2 + (unh + un−1
h )2,

(un+1
h − unh)2 + (unh − un−1

h )2 − (un+1
h − 2unh + un−1

h )2〉,

then, under the condition (4.9), we further have

Rh(un−1
h , unh, u

n+1
h )

≥ 3A+ 2

8
‖un+1

h − 2unh + un−1
h ‖22 − 〈

1

2
(unh)2 +

1

4
(un+1
h + unh)2, (un+1

h − unh)2〉

+
1

8
〈(unh)2 + (un−1

h )2 + (unh + un−1
h )2, (un+1

h − unh)2 + (unh − un−1
h )2〉

− 1

8
〈(unh)2 + (un−1

h )2 + (unh + un−1
h )2, (un+1

h − 2unh + un−1
h )2〉

≥ 〈3A+ 2

8
− 1

8
((unh)2 + (un−1

h )2 + (unh + un−1
h )2), (un+1

h − 2unh + un−1
h )2〉

− 〈1
2

(unh)2 +
1

4
(un+1
h + unh)2, (un+1

h − unh)2〉

≥ −〈1
2

(unh)2 +
1

4
(un+1
h + unh)2, (un+1

h − unh)2〉

≥ −A‖un+1
h − unh‖22.

The proof is then completed by using (4.10) and (4.12) with the above inequality.

5 Numerical experiments

In this section, we use the proposed time-stepping schemes to simulate the NCH equation
(2.4) equipped with the Gaussian kernel Jδ given by (5.1) below. We first carry out
some numerical experiments to test the temporal convergence rates of the SSI1 and
SSI2 schemes. Then we select various (ε, δ) values to investigate shapes of the interfaces
between phases in the steady states. Finally we perform some simulations to study the
coarsening dynamics of the phase transition in the long time evolution.

The family of smooth kernels, given by the Gauss-type functions, take on the form
of

Jδ(x) =
4

πd/2δd+2
e−
|x|2

δ2 , x ∈ Rd, δ > 0, (5.1)
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and satisfy

Cδ :=

∫
Rd
Jδ(x) dx =

4

δ2

and ∫
Rd
Jδ(x)|x|2 dx = 2d. (5.2)

Since Jδ decays exponentially as |x| → ∞, we are allowed to regard Jδ as a function
with a compact support in the finite domain Ω when the size of Ω is large enough
compared with δ. Thus, Jδ can be further periodically extended to Rd with respect
to Ω. Correspondingly, we denote by Lδ the nonlocal diffusion operator obtained by
replacing J by the Ω-periodic version of Jδ in (2.1).

Proposition 5.1. For any v ∈ C∞(Ω) and any x ∈ Ω, Lδv(x)→ −∆v(x) as δ → 0.

As a consequence of (5.2), Proposition 5.1 is often featured in the analysis of nonlocal
diffusion problems (e.g., [15, 39]). It tells us that the NCH equation (2.4) equipped with
the Gaussian kernel (5.1) converges to the local Cahn-Hilliard equation (2.7) as δ goes
to zero. One may also obtain the consistency of Lδ and −∆ for functions that are not
sufficiently smooth, see related discussions in [9, 16, 30]. The follow result is similar in
spirit to the Proposition 6 given in [16].

Proposition 5.2. The steady state solution u∗ of the NCH equation (2.4) equipped with
the Gaussian kernel (5.1) is continuous if δ ≤ 2ε.

Proof. Since Lδv = Cδv − Jδ ∗ v, the steady state u∗ satisfies

∆[(u∗)3 + (ε2Cδ − 1)u∗ − ε2Jδ ∗ u∗] = 0.

According to the Liouville’s theorem, i.e., every bounded harmonic function must be
constant, we obtain

(u∗)3 + (ε2Cδ − 1)u∗ − ε2Jδ ∗ u∗ = C,

or equivalently,
(u∗)3 + (ε2Cδ − 1)u∗ = ε2Jδ ∗ u∗ + C.

Since Jδ is smooth, the right-hand-side of above is a continuous function in Rd. Denote
by N (u∗) the left-hand-side. We know that, if ε2Cδ − 1 ≥ 0, the continuous mapping
N : R → R is increasing strictly, which implies the existence of the continuous inverse
of N . Therefore, u∗ = N−1(ε2Jδ ∗ u∗ + C) is continuous in Rd.

Remark. The continuity condition δ ≤ 2ε is equivalent to β ≥ 0.

5.1 Convergence rates in time

Example 5.1. We consider the evolutions governed by the NCH equation (2.4) equipped
with the Gaussian kernel Jδ in the periodic cell Ω = (−1, 1) × (−1, 1) up to the time
T = 0.05. The initial condition is set to be

u0(x, y) = 0.5 sinπx sinπy + 0.1.

For the spatial discretization, we adopt the Fourier spectral collocation method on
the uniform N×N mesh and choose N sufficiently large so that the errors caused by the
spatial approximation could be ignored. Based on the numerical tests, we find that it is
sufficient to fix N = 1024, and perform the numerical simulations using the time step
sizes τ = 2−k∆, k = 0, 1, 2, . . . , 8 with ∆ = 0.005. The approximate solution obtained
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by the SSI2 scheme with τ = 2−8∆/5 is taken as the benchmark solution for computing
errors. To meet the requirements of the stability, we set A = 2 and A = 3 for the SSI1
and SSI2 schemes, respectively.

Figure 5.1 shows the discrete L2 errors of the numerical solutions coming from the
cases ε2 = 0.1 and ε2 = 0.01 with δ2 = ε2, δ2 = 2ε2, and δ2 = 4ε2. We see from the
figure that the first and second order convergence rates of the SSI1 and SSI2 schemes,
respectively, are obvious and independent on the values of ε.
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(a) ε2 = 0.1
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(b) ε2 = 0.01

Figure 5.1: Convergence rates in time of the SSI1 and SSI2 schemes in Example 5.1.

5.2 Interfaces in the steady states

Now we investigate the shapes of the interfaces formed in the steady states of the phase
transitions governed by the NCH equation (2.4) with the Gaussian kernel under various
ε and δ. The parameter ε is known to describe the interface width, as in the case of
classic phase field models, and the parameter δ, usually called the horizon parameter for
the nonlocal diffusion operator Lδ, characterizes the range of nonlocal interactions [15].
In order to observe the interfacial motion more closely, we focus on the one-dimensional
case.

Example 5.2. We choose Ω = (−1, 1) and u0(x) = 0.1(sin 2πx + sin 3πx), and adopt
the SSI2 scheme with A = 3, N = 8192 and τ = 0.0001 to simulate the phase transition
till the steady state.

Some numerical results are presented in Figure 5.2, where δ2 = 0.01, and ε is chosen
as 0.25, 0.2, 0.15, 0.1, 0.08, and 0.06, and all of them satisfy the continuity condition
stated in Proposition 5.2. The energy stability of the SSI2 scheme can be seen in the last
column of the figure. For the cases ε = 0.25, 0.2, and 0.15, the graphs in the first row
present the steady states and energy evolutions, where all the energies remain unchanged
after t = 5, indicating that the steady states are reached for all cases. Similarly, the
configurations and energies for other three cases are given in the second row, and we
view the states at t = 100 as the steady ones. It is observed that the smaller ε is, the
longer time is needed for the evolution to reach the steady state with sharper interfaces.
Such phenomena are similar to those for the local Cahn-Hilliard equation [17].

In Figure 5.3, we fix ε = 0.1, and choose δ2 as 0.04, 0.03, 0.02, and 0.01. For
comparison, we also simulate the local Cahn-Hilliard equation (2.7) with ε = 0.1. The
energy stability of the SSI2 scheme in all cases can be seen in Figure 5.3(c) and the
steady states are already obtained for all cases at the final time t = 10. We observe
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Figure 5.2: Simulation results in Example 5.2 with δ2 = 0.01 and ε as 0.25, 0.2, 0.15
(top), 0.1, 0.08, 0.06 (bottom), repectively.

from Figure 5.3(a) and Figure 5.3(b) that the shapes of the interfaces depend highly on
the value of δ. As δ decreases, the interfaces turn flat generally, and the whole process
of phase transition approaches that of the diffuse interface described by the local case.
On the contrary, the interfaces turn sharper and sharper as δ increases, but unlike the
case of decreasing ε given above, the time needed for reaching the steady state turn a
little shorter. Figure 5.4 shows the results with fixed ε = 0.05 and δ2 = 0.01, 0.0075,
0.005, 0.0025, respectively, and the similar phenomena are observed.
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Figure 5.3: Simulation results in Example 5.2 with ε = 0.1 and δ2 = 0.04, 0.03, 0.02,
and 0.01, respectively.

According to the numerical results presented above, we find that, within the range
of chosen parameters, the main influence of the horizon parameter δ concentrates only
on the slope around the interface in the steady state, while the interfacial parameter ε,
as its action in the local case, influences not only the slope of the interface, but also the
height and shape of the “hill peak” away from the interface, and effectively the whole
evolution of the phase transition.
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Figure 5.4: Simulation results in Example 5.2 with ε = 0.05 and δ2 = 0.01, 0.0075,
0.005, and 0.0025, respectively.

5.3 Coarsening dynamics

Example 5.3. We take Ω = (−2π, 2π)× (−2π, 2π) and simulate the long time behavior
of the phase transition using the SSI2 scheme. The initial configuration is a random state
given by random numbers varying uniformly in [−0.1, 0.1] on each point in the uniform
mesh. We set the time step size τ = 0.001 on the time interval [0, 1000), τ = 0.01 on
[1000, 10000), and τ = 0.1 for t ≥ 10000 if needed.

First, we consider the case of δ = ε and choose N = 512. Figure 5.5 presents some
numerical results for ε = 0.09. The first graph shows the linear fitting of the log-log
energy data up to t = 100, where the fitting line is of the form E(t) = bet

me with

me = −0.331 and be = 16.305, which suggests the t−
1
3 power law for the energy decay

rate. The rest five pictures give the configurations of the approximate solution at time
1, 10, 100, 500, and 10000. Table 5.1 presents the linear fitting coefficients me and be
for the cases from ε = 0.09 to ε = 0.03. All the values of me are located around −1

3 .
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Figure 5.5: Energy evolution with ε = 0.09 and the approximate solutions at different
times in Example 5.3.
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Table 5.1: Coefficients of the linear fitting for the case δ = ε with N = 512.
ε 0.09 0.08 0.07 0.06 0.05 0.04 0.03

me −0.331 −0.333 −0.337 −0.340 −0.335 −0.336 −0.339
be 16.305 15.074 13.886 12.735 11.197 9.708 8.016

Next, we fix δ = 0.05 with N = 512 and decrease ε from 0.1 to 0.04. The linear fitting
coefficients are listed in Table 5.2 and the energies are partially plotted in Figure 5.6(a).
It can be found that the energy decay rates comply with the −1/3 power law quite well
for all cases. This is consistent to the local Cahn-Hilliard dynamics, see [13, 27] for
further discussions and additional references. The results for the case δ = 0.005 with
N = 1024 are presented in Table 5.3 and Figure 5.6(b) and the similar behavior is again
observed.

Table 5.2: Coefficients of the linear fitting for the case δ = 0.05 with N = 512.
ε 0.1 0.09 0.08 0.07 0.06 0.05 0.04

me −0.321 −0.320 −0.323 −0.336 −0.331 −0.340 −0.333
be 18.410 16.922 15.618 14.163 12.838 11.224 9.689

Table 5.3: Coefficients of the linear fitting for the case δ = 0.005 with N = 1024.
ε 0.1 0.09 0.08 0.07 0.06 0.05 0.04

me −0.333 −0.346 −0.340 −0.344 −0.339 −0.344 −0.342
be 8.932 8.231 7.611 6.960 6.245 5.473 4.756
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(b) δ = 0.005, N = 1024

Figure 5.6: Evolutions of the energies in Example 5.3.

6 Concluding remarks

In this paper, we investigate both first and second order stabilized linear semi-implicit
schemes for the NCH equation. Under the assumption on the positivity of the kernel, we
treat the nonlocal diffusion term implicitly while the nonlinear term explicitly, and add a
stabilizing term to obtain the stabilized schemes. For each scheme, we prove the energy
stability when the stabilizer A is sufficiently large, depending on the discrete L∞ bound
of the numerical solutions. Numerical experiments are conducted with the Gaussian
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kernels parameterized by δ to demonstrate the optimal convergence rates in time, to
investigate the phase transition interfaces of steady states with different choices of ε and
δ, and to predict the −1

3 power law for the energy decay in the long time evolutions.
The numerical results show that the interfaces become sharper when ε decreases or δ
increases, and it takes longer time for the evolution to reach the steady state for smaller
ε.

The problem we consider in this work is obtained by replacing the Laplacian in the
local energy (2.8) by the nonlocal diffusion operator Lh defined as (2.1). In order to
ensure the diffusivity of the problem, we assume that the kernel is integrable and its
integral value is greater than 1/ε2, though such assumptions are unnecessary to prove
the energy stability. Indeed, the case with non-integrable kernels will be distinct and
worthy further investigation. In addition, we could also replace the Laplacian in (2.4)
by another nonlocal operator to obtain the NCH equation in a more general form, and
consider their numerical analysis as one of our future works. Further extensions can also
be made to include variable (and concentration dependent) mobilities as in the local
case [27].

It is worth noting that we make an assumption on the uniform boundness of the
numerical solutions so that we can develop the energy stabilities for the proposed stabi-
lized schemes. As mentioned in the remark following Theorem 4.2, such a condition is
equivalent to the Lipschitz continuity of the derivative of the potential. In recent works
[28, 29], a new condition on the stabilizer A is provided, where neither the uniform
boundness nor the Lipschitz continuity is needed. It remains to be further studied if the
approach adopted in [28, 29] can be utilized in the case of the NCH equation.
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