Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/77280
PIRA download icon_1.1View/Download Full Text
Title: Finite element analysis of biomechanical effects of total ankle arthroplasty on the foot
Authors: Wang, Y 
Li, Z
Wong, DWC 
Cheng, CK
Zhang, M 
Issue Date: Jan-2018
Source: Journal of orthopaedic translation, Jan. 2018, v. 12, p. 55-65
Abstract: Background Total ankle arthroplasty is gaining popularity as an alternation to ankle arthrodesis for end-stage ankle arthritis. Owing to the complex anatomical characteristics of the ankle joint, total ankle arthroplasty has higher failure rates. Biomechanical exploration of the effects of total ankle arthroplasty on the foot and ankle is imperative for the precaution of postoperative complications. The objectives of this study are (1) to investigate the biomechanical differences of the foot and ankle between the foot with total ankle arthroplasty and the intact foot and (2) to investigate the performance of the three-component ankle prosthesis. Methods To understand the loading environment of the inner foot, comprehensive finite element models of an intact foot and a foot with total ankle arthroplasty were developed to simulate the stance phase of gait. Motion analysis on the model subject was conducted to obtain the boundary and loading conditions. The model was validated through comparison of plantar pressure and joint contact pressure between computational prediction and experimental measurement. A pressure mapping system was used to measure the plantar pressure during balanced standing and walking in the motion analysis experiment, and joint contact pressure at the talonavicular joint was measured in a cadaver foot. Results Plantar pressure, stress distribution in bones and implants and joint contact loading in the two models were compared, and motion of the prosthesis was analysed. Compared with the intact foot model, averaged contact pressure at the medial cuneonavicular joint increased by 67.4% at the second-peak instant. The maximum stress in the metatarsal bones increased by 19.8% and 31.3% at the mid-stance and second-peak instants, respectively. Force that was transmitted in three medial columns was 0.33, 0.53 and 1.15 times of body weight, respectively, at the first-peak, mid-stance and second-peak instants. The range of motion of the prosthetic ankle was constrained in the frontal plane. The lateral side of the prosthesis sustained higher loading than the medial side. Conclusion Total ankle arthroplasty resulted in great increase of contact pressure at the medial cuneonavicular joint, making it sustain the highest contact pressure among all joints in the foot. The motion of the prosthesis was constrained in the frontal plane, and asymmetric loading was distributed in the bearing component of the ankle prosthesis in the mediolateral direction. The translational potential of this article Biomechanical variations resulted from total ankle arthroplasty may contribute to negative postoperative outcomes. The exploration of the biomechanical performance in this study might benefit the surgeons in the determination of surgical protocols to avoid complications. The analysis of the performance of the ankle prosthesis could enhance the knowledge of prosthetic design.
Keywords: Ankle prosthesis
Bone stress
Finite element analysis
Joint contact pressure
Plantar pressure
Total ankle arthroplasty
Publisher: Elsevier
Journal: Journal of orthopaedic translation 
ISSN: 2214-031X
DOI: 10.1016/j.jot.2017.12.003
Rights: © 2017 The Authors. Published by Elsevier (Singapore) Pte Ltd on behalf of Chinese Speaking Orthopaedic Society. This is an openaccess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
The following publication Yan Wang, Zengyong Li, Duo Wai-Chi Wong, Cheng-Kung Cheng, Ming Zhang, 2018. Finite Element Analysis of Biomechanical Effects of Total Ankle Arthroplasty on the Foot. Journal of Orthopaedic Translation 12:55-65. is available at https://dx.doi.org/10.1016/j.jot.2017.12.003.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Wang_Biomechanical_Ankle_Arthroplasty.pdf3.49 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

129
Last Week
1
Last month
Citations as of Apr 21, 2024

Downloads

83
Citations as of Apr 21, 2024

SCOPUSTM   
Citations

55
Last Week
0
Last month
Citations as of Apr 26, 2024

WEB OF SCIENCETM
Citations

41
Last Week
0
Last month
Citations as of Apr 25, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.