Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/7295
Title: 2維線元不確定性ε[sub σ]模型誤差帶幾何特征的代數研究
Other Titles: Algebraic research on geometrical characteristic of error band for 2D linear segment uncertainty ε [sub σ] model
Authors: Zhu, CQ
Zhang, GQ
Shi, W 
Keywords: GIS
Uncertainty
?H[sub ?m] model
Error band
Geometrical characteristic
Issue Date: 2007
Publisher: 科学出版社
Source: 測繪学报 (Acta geodetica et cartographica sinica), Nov. 2007, v. 36, no. 4, p. 463-467 How to cite?
Journal: 測繪学报 (Acta geodetica et cartographica sinica) 
Abstract: 對地理信息系統(GIS)中2維線元不確定性ε[sub σ]模型的誤差帶的幾何特征進行研究。運用函數單調性和極值理論,從理論上證明εσ模型的誤差帶的幾何特征;得到線元誤差帶不僅具有"兩端大、中間小",而且也可能具有"一端大、一端小"的幾何形狀;給出了誤差帶的最小帶寬及其位置;論證了誤差帶的最小誤差帶寬的位置靠近中誤差較小的一端。本研究完善了2維線元不確定性εσ模型,使其更具有嚴密性,同時為GIS空間數據不確定性的研究提供了新的方法。
The geometrical characteristic of error band for 2D linear segment uncertainty ε[sub σ] model has been studied in this paper.The monotony and extremum theory of function are applied to prove the geometrical characteristic of error band for 2D linear segment uncertainty εσ model in theory.The result shows that the error band has the geometrical shape of "larger ends and smaller middle" or "one end larger and the other smaller".The minimum width and its exact position of the error band are calculated too.It is proved that the minimum width position of the error band is near the end with the smaller mean square error.Thus,the paper perfects the 2D linear segment uncertainty εσ model in theory and makes it more scientific,and also provides a new way to study the space data uncertainty in GIS.
URI: http://hdl.handle.net/10397/7295
ISSN: 1001-1595
Rights: © 2007 中国学术期刊电子杂志出版社。本内容的使用仅限于教育、科研之目的。
© 2007 China Academic Journal Electronic Publishing House. It is to be used strictly for educational and research use.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Zhu_Algebraic_Research_Geometrical.pdf250.63 kBAdobe PDFView/Open
Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

1
Citations as of May 16, 2017

Page view(s)

215
Last Week
1
Last month
Checked on Aug 14, 2017

Download(s)

46
Checked on Aug 14, 2017

Google ScholarTM

Check



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.