Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/1264
Title: The Ramsey numbers R(C[sub m], K[sub 7]) and R(C[sub 7], K[sub 8])
Authors: Chen, Y
Cheng, TCE 
Zhang, Y
Keywords: Ramsey number
Complete graph
Issue Date: Jul-2008
Publisher: Elsevier Ltd.
Source: European journal of combinatorics, July 2008, v. 29, no. 5, p. 1337-1352 How to cite?
Journal: European journal of combinatorics 
Abstract: For two given graphs G₁ and G₂, the Ramsey number R(G₁, G₂) is the smallest integer n such that for any graph G of order n, either G contains G₁ or the complement of G contains G₂. Let C[sub m] denote a cycle of length m and K[sub n] a complete graph of order n. In this paper we show that R(C[sub m], K[sub 7]) = 6m − 5 for m ≥ 7 and R(C[sub 7], K[sub 8]) = 43, with the former result confirming a conjecture due to Erdös, Faudree, Rousseau and Schelp that R(C[sub m], K[sub n]) = (m − 1)(n − 1)+ 1 for m ≥ n ≥ 3 and (m,n) ≠ (3,3) in the case where n = 7.
URI: http://hdl.handle.net/10397/1264
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2007.05.007
Rights: European Journal of Combinatorics © 2007 Elsevier Ltd. The journal web site is located at http://www.sciencedirect.com.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
EJC2804.pdfPre-published version240.09 kBAdobe PDFView/Open
Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

2
Last Week
0
Last month
0
Citations as of Jun 3, 2016

WEB OF SCIENCETM
Citations

4
Last Week
0
Last month
0
Citations as of Aug 25, 2016

Page view(s)

531
Last Week
1
Last month
Checked on Aug 28, 2016

Download(s)

455
Checked on Aug 28, 2016

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.